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INTRODUCTION 

"There is abundant evidence that the risk of developing coronary 

heart disease is positively correlated with the level of cholesterol in 

the plasma."̂  A causative relationship, however, has not yet been indis

putably established. Epidemiological, clinical and experimental investi

gations indicate that a number of factors affect serum cholesterol concen

tration. Variations in diet or activity which alter serum cholesterol 

concentration require further investigation to elucidate the mechanisms 

of their effects. Meal pattern or feeding frequency is one such variable. 

Other variables are the degree of saturation of dietary fat and the pro

tein intake. 

Observations made in the 1950s first indicated that serum cholesterol 

concentrations might be increased by decreasing feeding frequency. Many 

such studies, representing work with different species, sexes, ages, diets 

and meal patterns have been reported (Cohn et al., 1961; Gopalan et al., 

1962; Wells et al., 1963; Cohn, 1954; Leveille and Hansen, 1965; Reeves 

and Arnrich, 1974). 

Ill our laboratory a model, developed to study rapid lipogenesis in 

adult rats recovering from chronic undernutrition, has proven useful for 

studying the effects of feeding frequency and polyunsaturated fat upon cho

lesterol metabolism. With this model, serum cholesCerol concentrations 

were found to be elevated during realimentation when rats consumed their 

D̂ist and Coronary Heart Disease. A joint statement of the Food and 
Nutrition Board, Division of Biology and Agriculture, National Academy of 
Sciences - National Research Council, and the Council on Foods and Nutri
tion, American Medical Association, July, 1972. 
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daily allotment within an 8 hour period (MF) compared with controls con

suming similar amounts during a 24 hour period (Reeves and Arnrich, 1974). 

Polyunsaturated fat decreased serum cholesterol concentration (Avigan 

and Steinberg, 1958; Bloomfield, 1964; McGovern and Quackenbush, 1973b). 

Increased dietary protein concentration also decreased serum cholesterol 

concentration (Kenney and Fisher, 1973). Although there is controversy as 

to the mechanisms of these changes, available evidence points to an accel

eration of cholesterol turnover as the result of high dietary intakes of 

both polyunsaturated fat and dietary protein. 

Recommendations made by health professionalŝ  indicate that individ

uals at risk from coronary heart disease should, in practice, increase 

their intakes of polyunsaturated fats to decrease serum cholesterol con

centrations. There is growing evidence, however, that polyunsaturated fat 

itself may pose risks to health. For example, prolonged constuapEion of 

vegetable oils high in polyunsaturated fat has resulted in Increased mor

tality rates in rats. Membrane structures may be altered functionally when 

2 
high levels of linoleic acid replace other fatty acids. Investigations 

in this laboratory have indicated increased in vitro tissue fragility and 

altered cardiac performance following safflower oil feeding which may indi-

Diet and Coronary Heart Disease. A joint statement of the Food and 
Nutrition Board, Division or Biology and Agriculture, National Academy of 
Sciences - National Research Council, and the Council on Foods and Nutri
tion, American Medical Association, July, 1972. 

2 
A. A. Spindler̂  M= M, Mathias and J. Dupont, Colorado State Univer

sity, unpublished communication, 1975. 
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cate decreased tissue collagen concentration. These findings indicate a 

need for caution in making recommendations for dietary change solely for 

the purpose of altering serum cholesterol concentrations. 

One aspect of overall metabolism which is not well understood is cho

lesterol metabolism following dietary alterations. In humans there is 

little opportunity to study simultaneously a number of factors involved in 

cholesterol metabolism. For this reason a study with rats was designed to 

investigate as many facets of cholesterol metabolism as possible with varia

tions in feeding frequency, dietary fat and dietary protein. It was hoped 

that this study would help to explain fluctuations observed in serum cho

lesterol concentrations with these variables. A model which showed rapid 

changes in serum cholesterol concentration with variations in feeding fre

quency was used throughout the study. Variations in concentration and 

degree of saturation of dietary £a.t and in concentration of dietary protein 

were also incorporated into the design. A dietary fat concentration of 20% 

by weight or 40% of calories was chosen as an approximation of fat intake 

by the average Western individual. 

Following a preliminary experiment, radioactive tracers were intro

duced to assess rates of cholesterol biosynthesis and catabolism. The 

acute turnover of cholesterol into bile acids and transport between serum, 

liver and intestines :;sre followed with 4-** C-cholesterol. Acetate labeled 

with was used to investigate rates of cholesterol and fatty acid biosyn

thesis. 

It is well documented that variations in serum cholesterol concentra-

Ĉ-S. Heng, Iowa State University, personal communication, 1975. 
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tion result from alteration of one or more of the following aspects of 

cholesterol metabolism: 1) differences in absorption of cholesterol from 

the diet; 2) shifts in tissue levels of cholesterol; 3) alteration in the 

rate of cholesterol biosynthesis; 4) differences in the rate of cholesterol 

degradation; 5) differences in recycling of cholesterol; and 6) differences 

in excretion of cholesterol and its metabolites. It is hoped that this 

study will contribute to knowledge of serum cholesterol regulation after 

investigation of the metabolism of cholesterol following alterations in 

feeding frequency and dietary fat and protein concentrations. 
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LITERATURE REVIEW 

A number of investigators have observed that dietary fat and frequency 

of food consumption affect serum cholesterol concentration. Few studies, 

however, have dealt with the influence of these variables on cholesterol 

metabolism. It is generally accepted that observed alterations in serum 

cholesterol concentration are associated with one or more of the following 

factors: differences in absorption of dietary cholesterol from the gut, 

shifts of tissue cholesterol, altered cholesterol biosynthesis and (or) 

altered degradation and excretion of cholesterol and its metabolites. 

This review is divided into three sections. The major section is con

cerned with control of cholesterol metabolism. Another section deals with 

the influence of dietary variables, especially dietary fat, on cholesterol 

metabolism. Finally, the literature pertaining to the influence of perio

dicity of eating on cholesterol metabolism is summarized. 

Investigations into control of cholesterol metabolism have been ad

vanced wish the recognition tnat rates of cholesterol bioSynthesiB and deg

radation neak at mid-night, unless the normal pattern of food consumption 

is reversed. Another important advance came with the purification of 0-

hydroxy-g-methylglutaryl coenzyme A reductase (HMG-CoA reductase, E.G. 

1.1.1.34). Biochemical and immunological techniques may now be used in 

studying control of cholsstcrol tuCtuboliam. 

Several recent reviews have covered aspects of control of cholesterol 

metabolism in greater depth than will be attempted here. They may be use

ful as a supplement to this review. Control of steroid biosynthesis has 

been reviewed by Bortz (1973) and Dempsey (1974). McIntyre and Isselbacher 
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(1973) have discussed the role of the small intestine in cholesterol metab

olism. 

Factors Contributing to Homeostasis in Cholesterol Metabolism 

Control of hepatic choies terogenes is 

Cholesterol metabolism was first reported to be under homeostatic con

trol in 1933 (Schoenheimer and Breusch). Since that time, the negative 

feedback regulation of hepatic cholesterol synthesis has been well docu

mented in a number of species, including man (Blattathiry and Siperstein, 

1963; Slpersteln and Pagan, 1966; Grundy et al., 1969). 

When cholesterol is fed* thereby depressing hepatic cholesterogenesls, 

body cholesterol does accumulate through absorption and synthesis. The 

relative contributions of exogenous and endogenous cholesterol to the cir

culating pool are species dependent. Cholesterol is more readily absorbed 

in the dog and rat than in man. When labeled cholesterol is fed to these 

three species, 85-90% of serum cholesterol in dog and rat and 40% of serum 

cholesterol in man is of dietary origin (Wilson, 1968). Thus under condi

tions of depressed hepatic cholesterol synthesis, dog and rat synthesize 

about 10-15% of body cholesterol, while in man this figure is about 60%. 

Most of this synthesis is presumed to occur in the small intestine (Dietschy 

and Siperstein, 1567). 

Regulation of hepatic cholebterol biosynthesis say occur at several 

enzymatic steps in the biosynthetic scheme. Most investigators have con

cluded, however, that the major site of cholesterol feedback is the enzy

matic step converting p-hydroxy-p-methylglutarate to mevalonate. The en

zyme involved is HMG-CoA reductase (Figure 1). Early data from Bucher et al. 
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Acetate > Acetyl CoA > Acetoacetyl CoA 

p-Hydroxy-B-methylglutaryl CoA > Mevalonate 

6 steps 
-> Farnesyl pyrophosphate > Squalene 

-> Lanosterol* > Cholesterol* 
3 steps 6 steps 

> Cholesterol® 
3 steps 

1 Acetyl CoA synthetase. 

2 Acetoacetyl CoA thiolase. 

3 HMG-CoA synthase. 

4 HMG-CoA reductase. 

5 Squalene synthetase. 

*Digltonin nreclpitable sterol. 

Figure 1. Conversion of acetate to cholesterol (White, Handler and 
Smith, 1973) 
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(1959) indicated that the major control mechanism of biosynthesis occurred 

prior to mevalonate formation. Fasting and cholesterol feeding decreased 

conversion of acetate to cholesterol more than conversion of mevalonate to 

cholesterol. Siperstein and Pagan (1966) localized control at the level 

of HMG-CoA reductase. Cholesterol feeding decreased mevalonate synthesis 

but not synthesis of 6-hydroxy-6-methylglutarate in their experiments. 

Control of HMG-CoA reductase Liver HMG-CoA reductase activity has 

been shows to be influenced by a number of conditions including fasting, 

cholesterol feeding, diurnal cycling, hormone levels and bile acid concen

trations» Effects of these variables on hepatic cholesterogenesis will be 

discussed independently, though they are probably Interrelated to a large 

extent. 

Feedback control by dietary cholesterol Negative feedback 

control by diecary cholesterol (Bucher et al., 1959; Siperstein and Fagan, 

1966) was the earliest recognized control of HMG-CoA reductase. Until very 

recently, investigators believed that depression of sterol synthesis by 

dietary sterol was due entirely to decreased synthesis of HMG-CoA reductase. 

There is now direct evidence that cholesterol feeding has at least two 

effects on HMG-CoA reductase activity; an initial inhibition independent 

of protein synthesis; and a latent depression of new enzyme synthesis 

(Iliggins and P̂ udney, 1973; Zavoral et al.. 1973). 

Diurnal control Hamprecht et al. (1969) first showed that 

HMG-CoA reductase activity varied diurnally, peaking in activity at mid

night and having a low at noon. Shapiro and Rodwell (1969) confirmed their 

work and further demonstrated a requirement for protein synthesis in 

diurnal control. Cycloheximide injection completely prevented both the 
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rise in enzyme activity at night and the loss of activity during the day. 

Edwards et al. (1972) demonstrated circadian rhythmicity of hepatic cho-

lesterogenesis in the rat in vivo. Hepatic microsomal HMG-CoA reductase 

activity and incorporation of V̂-acetate and into cholesterol were 

highest at about midnight and lowest at noon. 

Studies in Edwards' laboratory led to the postulation that the cir

cadian rise in enzyme activity was due to ingestion of food. In the first 

study, diurnal rhythmicity of HMG-CoA reductase was reversed in rats by 

reversing normal illumination (Edwards and Gould, 1972). Most food con

sumption occurred during the dark hours. In another experiment, with rats 

trained to eat from 9 A.M. to 1 P.M. under normal illumination, maximal 

hepatic cholesterogenesis occurred at 6 P.M. compared to 12 P.M. for ad 

libitum fed controls (Edwards et al., 1972). 

Fat flow to the liver following alimentation may âtimulâEe cholestero

genesis by inducing increased formation of HMG-CoA reductase (Bortz et al., 

1973; Bortz and Steele, 1973). A small peak in plasma free fatty acid 

levels between 3 and 6 P.M. in fed rats, just prior to the rise in hepatic 

HMG-CoA reductase activity, has been observed. Arguments for elevation of 

hepatic eholesterogenesis by free fatty acids are wcakcnsd by observations 

that fasting elevated plasma free fatty add but decreased cholesterogene

sis coEpared to alimentation. 

Hormonal control There is strong evidence for a physiological 

control of HMG-CoA reductase by insulin (Lakshmanan et al., 1973). Activ

ity of HMG-CoA reductase was increased 2-7 times following subcutaneous ad

ministration of insulin to both normal and diabetic rats. Reductase activ

ity began to increase after 1 hour, rose to a maximum in 2-̂ 3 hours, and 
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declined to control levels after 6 hours. The response was elicited at a 

time during the day when the normal diurnal variation in reductase activity 

approached a minimum. It was also elicited when animals did not have ac

cess to food. The known relationship between insulin and food consumption 

makes physiological induction of cholesterol biosynthesis by insulin an 

attractive hypothesis. 

Lakshmanan and coworkers (1973) also injected adrenalin and thyroxine 

into rats. These hormones increased HMG-CoA reductase activity with activ

ity maxima at 12 and 30 hours, respectively. It is unlikely that these 

hormones influence the diurnal rise in enzyme activity, but they may in

fluence the enzyme in some physiological conditions. 

Thyroxine affects cholesterol biosynthesis at a step prior to mevalon

ate formation (Fletcher and Myant, 1958). Rats made hyperthyroid synthe

sized cholesterol from acetate at an increased rate, but race of mevalonate 

synthesis was unchanged. Hypothyroid rats incorporated less acetate and 

similar amounts of mevalonate into cholesterol compared with normal animals. 

Feedback control by bile acid Large increases in cholesterol 

biosynthesis have been observed following biliary drainage (Dietschy and 

Siperstein, 1965, Dietschy and Game!, 1971). The increase in biosynthesis 

probably resulted in part from a decreased ability to reabsorb cholesterol 

from the gut, tiiereby releasing negative feedback inhibition of hepatic 

cholesterogenesis. 

Increased hepatic cholesterogenesis following biliary drainage could 

be due, however, to releaee of feedback inhibition from bile salts rather 

than from cholesterol. The reciprocal situation, that is depression of 
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liver HMG-CoA reductase activity and cholesterogenesis by bile salts, has 

been shown to occur (Hamprecht et al., 1971; Kandutsch and Chen, 1973). 

Cholic acid feeding prevented the diurnal rise in HMG-CoA reductase activ

ity (Hamprecht et al., 1971). Evidence that bile salts mediate a change 

in enzyme content as opposed to simply decreasing activity comes 

from Barth and coworkers (1973). Cholesterogenesis in isolated rat livers 

was not decreased with portal infusion of taurocholate and cholate. 

Research by Hamprecht and coworkers (1971) did not support the hypoth

esis that bile acids decreased HMG-CoA reductase activity Indirectly by 

improvlag cholesterol absorption from the gut, Cholic acid fed to rats 

with lymph fistulas depressed peak HMG-CoA reductase activity compared with 

controls fed no cholic acid. The daily low reductase activity was not fur

ther depressed by cholic acid feeding. 

Inhibition of cholesterol biosynthesis by cholesterol metabolites may 

be dependent upon the presence of a 7-hydroxy or 7 a-keto group on the 

molecule. In liver cell and L cell cultures, HMG-CoA reductase activities 

and rates of sterol synthesis from acetate were strongly inhibited by high

ly purified preparations of 7 0-hydroxycholesterol, 7 a-hydroxycholesterol 

and 7 a-ketocholesterol (Kandutsch and Chen, 1973). Other metabolites of 

cholesterol, including cholic acid and chèuôdèùxyeholie acid, did not in

hibit HMG-CoA reductase activity under conditions o£ the atudy. 

Similarities in the diurnal patterns of hepatic cholesterol and bile 

acid synthesis (Danielsson, 1972; Danielsson, 1973; Bortz et al., 1973; 

Bortz and Steele, 1973) provide a physiological rationale for a control of 

HMG-CoA reductase activity by bile acid. 
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Increased rates of hepatic cholesterogenesls accompanied biliary ob

struction (Ferris et al., 1972; Friedman and Byers, 1957; Byers et al., 

1962) as well as biliary drainage. Since hepatic bile acid concentrations 

are Increased with biliary obstruction and decreased with biliary drainage, 

there Is not a simple Inverse relationship between hepatic bile acid con

centration and cholesterogenesls. 

Rats subjected either to biliary drainage or to biliary obstruction 

have decreased bile acid concentrations in the small intestine. One could 

speculate that the effector of cholesterol biosynthesis in both situations 

is a blood factor produced by the small intestine under conditions of low 

bile acid concentration. Blood of biliary obstructed rats contained an 

agent which increased hepatic cholesterol biosynthesis. Ferris et al. 

(1972) postulated that this factor was of hepatic origin. 

Control mechanisms Although it has been accepted that control 

of cholesterol biosynthesis occurs at the level of HMG-CoA reductase, 

little has been learned about the mechanism of control. Research in this 

area is ongoing in a number of laboratories, 

Investigators have generally believed that sterol synthesis was con

trolled solely by the turnover of HMG-CoA reductase. Cycloheximide injec

tion prevented the normal diurnal rise in HMG-CoA reductase activity 

(Shapiro and Rodwell. 1969). Therefore, synthesis of enzyme was required 

for the normal diurnal rise in cholesterol biosynthesis. Lakshmanan et al. 

(1973) found no evidence for activation of pre-existing enzyme by insulin 

in their studies. Furthermore, insulin-induced activity of HMG-CoA 

reductase required enzyme synthesis. The rise in activity of HMG-CoA 
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reductase, following removal of a serum factor which suppressed HMG-CoA 

reductase activity, required de"novo protein synthesis (Brown et al., 1973). 

Recent reports Indicate that HMG-CoA reductase activity can be regu

lated more rapidly by mechanisms other than synthesis and degradation of 

the enzyme. Normal serum was infused Into rats as a control. Normocho-

lesterolemic serum was compared with hypercholesterolemic serum and (or) 

cycloheximide. Cycloheximide acted much more slowly in blocking synthesis 

of cholesterol than did injected cholesterol (Tanabe et al., 1972), In 

another study, depression of cholesterol biosynthesis occurred within one 

hour after infusion of hypercholesterolemic serum (Zavoral et al., 1973). 

An inhibitor of cholesterol biosynthesis detected in rat milk and bile also 

seemed to affect the activity of the enzyme directly (McNamara et al., 

1972). 

These results were consistent with direct inhibition of HHG-CoA 

reductase activity, but they did not preclude the possibility of enhanced 

degradation of enzyme. Purification of HMG-CoA reductase has recently 

allowed Higgins and Rudney (1973) to demonstrate conclusively that changes 

in the activity of the enzyme occur with cholesterol treatment. Using 

immunoprecipitation, the authors showed that feeding cholesterol did not 

alter the amount of HMG-CoA reductase within 4 hours, though the activity 

of the enzyme fell markedly within this period of tlzs. Twenty-four hours 

later, the diurnal rise in activity was decreased in cholesterol fed ani

mals. Decreased levels of enzyme, as shown by decreased quantities of pre-

cipitable protein, caused the change in activity. The authors concluded 

that cholesterol feeding has at least two effects on enzyme activity: a 

rapid inhibition of activity independent of protein synthesis, and subse
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quent depression of new enzyme synthesis. 

A number of possible mechanisms for rapid control of the enzyme are 

under investigation. Phosphorylation-dephosphorylation has been studied 

as a possible control mechanism, but the evidence at this time is not con

clusive. Cyclic AMP inhibited cholesterol biosynthesis in vitro (Goodwin 

and Margolis, 1973). The inhibition could involve protein kinase phospho

rylation of a specific enzyme (Goodwin and Margolis, 1973). However, 

Raskin et al. (1974) believe that in vitro suppression of cholesterol and 

fatty acid synthesis with high concentrations of cyclic AMP are of ques

tionable significance. In their studies s cyclic AMP levels in the intact 

rat were elevated 50 times with glucagon treatment. Neither lipid synthesis 

nor HMG-CoA reductase activity were decreased by these concentrations. 

Nevertheless, a control of this type is attractive, because it might account 

for known effects of hormones on in vivo cholesterogenesis. 

Another possibility for control is suggested by recent findings of 

Knull et al. (1974). These investigators have evidence that rat brain 

hexokinase is controlled by microsomal membrane binding versus solubiliza

tion. A similar type of control might be postulated for HMG-CoA reductase 

activity since it also is a microsomally associated enzyme and since cho

lesterol is a constituent of the membrane. 

It appears that HMG-CoA reductase has at least tvro binding sites for 

NADPH (Tormanen et al., 1975). Activity of the enzyme was increased mark

edly by preincubation with NADPH. Physiological conditions in which NADPH 

levels in the cell are elevated could maximally activate Kî'G-GoA reductase. 
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Control of other enzymes Involved in cholesterogenesis A number of 

investigators have demonstrated that control of hepatic cholesterogenesis 

can occur other than at the level of HMG-CoA reductase. Though this enzyme 

still seems to be the major site of control, it is conceivable that in cer

tain physiological or nutritional states control at one of the following 

levels may predominate. 

Conversion of acetate to acetyl-CoA Studies of cholesterol 

biosynthesis have indicated that the conversion of acetate to acetyl-CoA 

(Figure 1) may be regulated (Bates and Rothblat, 1974; Haward et al., 1974). 

Evidence for regulation at this step, however, comes from cell culture 

studies only. 

Conversion of acetyl-CoA to HMG-CoA Recently, both mitochon

drial and cytoplasmic systems for production of HMG-CoA were shown to exist 

(Clinkenbeard et al., 1973). Therefore, the committed step iu cholesterol 

biosynthesis may exist prior to that catalyzed by HMG-CoA reductase (Fig

ure 1, Derapsey, 1974). Control of cholesterol biosynthesis may be at the 

levels of acetoacetyl-CoA thiolase and (or) HMG-CoA synthase. 

Convincing evidence is lacking to support this hypothesis, but few 

comparisons of enzyme activities prior to mevalonate formation have been 

made. Host studies have compared synthesis of cholesterol from acetate and 

mevalonate. Or these, most have demonstrated that cholesterogenesis is 

controlled prior to mevalonate formation without delineating specific reac

tions. Multiple cytosolic forms of hepatic HMG-CoA synthase can occur, 

possibly regulating cholesterogenesis by this enzyme (Sugiyama et al.j 

1972). 
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Dugan et al. (1972) have evidence that the diurnal alteration In choles

terol biosynthesis is controlled by an enzyme prior to HMG-CoA reductase. 

Conversion of mevalonate to cholesterol A number of investi

gators have found evidence of regulation between mevalonate and cholester

ol. Bucher and coworkers (1959) concluded that at least two such regula

tory steps existed. Carroll (1964) found two regulatory sites between 

mevalonate and squalene. Still other investigators found two sites of con

trol, one between mevalonate and famesyl pyrophosphate (Figure 1), and 

the other between squalene and dlgitonln precipitable sterol (Slakey et 

al., 1972). 

With In vivo studies in rata, Shah (1975) found changes in both in

corporation of mevalonate into squalene and squalene into dlgitonln pre

cipitable steroid (DPS). The ratio of DPS to nonsaponlflable fat decreased 

between 7 and 34 days in rats, indicating a decrease in the conversion of 

squalene to cholesterol following weaning. 

Control of small intestine choiesterogenesis 

Dletschy and Slpersteln (1967) showed in rats that hepatic and small 

Intestine cholsstcrogenesis together accounted for approximately 90% of 

whole body synthesis. When cholesterol was fed, thereby depressing hepatic 

choiesterogenesis, small Intestine cholesterol synthesis was little affected. 

Therefore, the highest rate of cholesuerol synthesis in cholesterol fed 

rats appears to be In the gastrointestinal tract. 

Chevallier and Lutton (1973) studied the quantitative relationship in 

excreta between cholesterol synthesized in the gut, cholesterol synthesized 

in other organs and dietary cholesterol. Synthesis in tissues other than 
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the small Intestine provided a constant amount of approximately 5 mg cho

lesterol per day. Additional synthesis came from the gastrointestinal 

tract and was dependent upon the absorption coefficient. Absorption coef

ficients were between 35 and 95%. Total synthesis was between 10 and 25 mg 

per day. Therefore, gastrointestinal synthesis accounted for between 50 

and 80 percent of total body synthesis in rats studied. 

Investigators questioned if intestinally synthesized cholesterol could 

contribute to circulating pools. High rates of intestinal cholesterogene-

sis occurred with drastically curtailed cholesterol absorption in bile di

verted animals (Distschy and Sipsrstein» 1965)= Lindsay and Wilson (1965) 

first showed that cholesterol synthesized in the intestinal wall entered 

into the circulating pool. In further experiments, these results were con

firmed, and an attempt was made to quantify the contribution of the intes

tine to circulating pools of cholesterol (Wilson, I960). Cholesterol was 

fed to squirrel monkeys to inhibit hepatic cholesterogenesis, and the in

testinal lymph ducts were cannulated. Cholesterol synthesized from labeled 

acetate in the intestinal wall entered the lymph. From this, the authors 

calculated the contribution of intestinally synthesized cholesterol to the 

circulating cholesterol pool in intact monkeys. 

Control by bile acids Thêcê is strong evidence that bile salts in

hibit intestinal cholescerogenesis. In rat and man tlie intestine responds 

to removal of bile acid with increased cholesterogenesis. Diversion of 

bile from the small intestine of rats increased mucosal synthesis through

out the small bowel, while infusion of bile caused a striking inhibition, 

of sterol production (Dietschy and Siperstein, 1965). Dietschy and Gamel 
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(1971) demonstrated greatly enhanced sterol synthesis in the distal ileum 

of man following interruption of enterohepatic circulation. 

Bile salts were the constituents of bile which inhibited cholesterol 

synthesis in intact animals (Dietschy, 1968). Bile salts exerted their 

control in the biosynthetic sequence of cholesterol between acetyl-CoA and 

mevalonate. Bile acids appear to inhibit cholesterol biosynthesis by de

creasing HMG-CoA incorporation into mevalonate (Hatanaka et al., 1972; 

Shefer et al., 1973). Biliary diversion or feeding of sitosterol enhanced 

the activity of HMG-CoA reductase in rat intestinal crypt cells, while ad

ministration of taurocholate and taurochenodeoxycholate reduced enzyme ac

tivity. Bile salts abolished the rise in intestinal HMG-CoA reductase 

activity in the next diurnal cycle (Shefer et al., 1973). 

The structural specificity of bile acids required for inhibition of 

intestinal sterol synthesis was studied in cell free extracts of yeast by 

Hatanaka et al. (1972). The effects of 40 species of bile acids and re

lated compounds on the incorporation of labeled acetate into sterol were 

compared. Inhibitory activity required the presence of a 3 or 7 a-hydroxy 

group and a carboxyl group at the terminal side chain. When an additional 

hydroxyl group was introduced at the ô or 12 position, inhibition was abol

ished. Taurine conjugates of bile acids inhibited sterol synthesis as well 

as did free bile acids. Glycine conjugates of bile acidŝ  however, inhib

ited sterol synthesis only about half as effectively as did free bile acids. 
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Feedback control by cholesterol Chevallier and Lutton (1973) con

cluded that biliary acids were not the primary regulatory agents of intes

tinal cholesterogenesis. Synthesis of cholesterol in the gastrointestinal 

tract was inversely correlated with absorption. Data from Cayen (1971) 

also support a direct role of cholesterol in the regulation of intestinal 

cholesterogenesis. Cholesterol biosynthesis increased in the intestine 

after binding of cholesterol by tomatine and without a change in bile acid 

production. Intestinal HMG-CoA reductase activity in rats was decreased 

with both cholesterol and bile acid feeding (Shefer et al., 1973), but the 

reduction in activity could not be ascribed to an increase in sterol con

centration within the intestinal crypt cells. 

Diurnal control Cholesterol biosynthesis in jejunum and distal 

ileum was diumally regulated (Edwards et al., 1973). The amplitude of 

the diurnal rise was sstaller than that observed in the liver. Maximal in

corporation of labeled acetate into cholesterol occurred earlier in the 

intestine (between noon and 6 P.M.) than in the liver (6 P.M.). The au

thors suggested that the diurnal rise in HMG-CoA reductase activity in both 

tissues was related to ingestion of food. 

Control of bile acid formation from cholesterol 

The liver is the only organ capable of synthesizing bile acids from 

cholesterolc Its role in bile acid production was demonstrated by Harold 

et al. (1955). Cholic acid produced in the liver originated from choles

terol of both biosynthetic and exogenous origin (Rosenfeld and Hellman, 

1959). Following administration of 4- C-cholesterol and 'H-acetate to 

bile fistula subjects, time curves of H: C were identical for cholic acid 
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and cholesterol ester. 

Hepatic free cholesterol appears to be the precursor of bile acid syn

thesis. The specific activity of bile acids formed was slightly below that 

of hepatic free cholesterol but markedly higher than that of liver esteri-

fied cholesterol after labeled acetate injection (D'Hollander and Chevallier, 

1972; Mathe et al., 1972). McGovern and Quackenbush (1973c) found greater 

conversion of ®H~cholesterol than of labeled cholesteryl oleate and lino-

leate to bile acid. Six hours later half of the ̂ *C-cholesterol originally 

esterified was recovered in the liver as free cholesterol. 

Recently Investigators have postulated that newly synthesized choles

terol may be preferentially used for bile acid production (Mitroupolos et 

al., 1973; Balasubramanian, et al., 1973), Cholesterol in rat liver micro

somes was labeled by intravenous injection of ̂ Ĉ-cholesterol. Cholesterol 

specific activity was about 3 tiaes that of ? a-hydroxycholesterol formed 

by the microsomes in vitro. Cholesterol reaching liver microsomes from the 

blood circulation mixed preferentially with the fraction of microsomal cho

lesterol not accessible to cholesterol 7 «-hydroxylase. These results 

raised the possibility that cholesterol synthesized ̂  situ was the pre

ferred substrate for bile acid production. 

Feedback control by bile acid Hofmann (1965) proposed a theoreti

cal Eodel of enterohep^tlc circulation of bile acids. He emphasized that 

meaningful experiments to test for negative feedback control of bile acid 

on bile acid synthesis required îcnowledge of bile acid pool size and rate 

of enterohcpatic circulation of the pool. Other investigators have used 

this model to study feedback control by bile acids on their own production 
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(Dietschy and Wilson, 1970; Shefer et al,, 1969). Dietschy and Wilson 

termed the mass of bile acid transferred across the liver per unit time as 

"hepatic bile acid flux". 

Negative feedback inhibition of bile acid synthesis by bile acid was 

demonstrated by Shefer et al. (1969), who calculated that the bile acid 

pool in the rat was approximately 14 mg/100 g body weight. A flux of 7 mg/ 

100 g body weight/hour was required to maintain negative feedback inhibi

tion. When taurccholate flux fell below 7 rag/100 g body weight/hour, bile 

acid synthesis was not Inhibited. Thus 14 mg bile acld/100 g body weight 

had to circulate 12 times per day to maintain feedback inhibition of bile 

acid synthesis. 

The first committed step in bile acid synthesis is catalyzed by cho

lesterol 7 «-hydroxylase. Feedback control by bile acid appears to occur 

at the level of this enzymatic step (Shefer et al., 1968; Shefer et al., 

1970). Activity of cholesterol 7 a-hydroxylase was enhanced in livers of 

bile fistula or cholestyramine treated rats in vitro (Shefer et al., 1968). 

Later it was demonstrated in vivo that control of bile acid synthesis oc

curred at the level of cholesterol 7 a-hydroxylase (Shefer et al., 1970). 

Four labeled precursors or bile acids (acetate, asvalonats, cholesterol 

àud Cuoles£-5-=£ne=3(3)7(a)-diol) îrere injected into rats. Incorporation 

of acefcàcê, mevalonate and chclcctcrcl into bile acids w«s Inhibited in the 

presence of the circulating bile acid pool. Injection of choiest-5-ene-

3(6)7(a)-dlol bypassed its normal catalytic formation by cholesterol 7 a-

hydroxylase. This labeled aetabollte was Incorporated into bile acid equal

ly well in the presence or absence of circulating bile acid. 
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The enzyme 12 a-hydroxylase was also stimulated by bile fistula and 

cholestyramine feeding but was quantitatively less important than stimula

tion of cholesterol 7 a-hydroxylase (Danielsson et al., 1967; Johansson, 

1970). The enzyme may be most important in the qualitative control of bile 

acid synthesis. The production of cholate, but not chenodeoxycholate, re

quires 12 a-hydroxylase. Thyroxine is known to inhibit activity of this 

enzyme. Hyperthyroidism decreased the ratio of cholate to chenodeoxycho

late from that of normothyroid animals (Ifosbach, 1972). 

Polyunsaturated fat may increase 12 a-hydroxylase activity. Feeding 

com oil versus coconut oil (Lindstedt et al., 1965) or safflower oil ver

sus beef tallow (McGovem and Quackenbush, 1973!̂ .) increased ratio of 

cholate to chenodeoxycholate in rat bile. 

There is evidence that cholic acid can influence production and turn

over of chenodeoxycholate. Cholic acid feeding in man increased pool alae 

of cholate 2-5 times while simultaneously decreasing pool size and turnover 

of chenodeoxycholate by about 50% in all subjects (Einarsson, et al., 1973). 

Induction by cholesterol Feeding cholesterol to rats can increase 

bile acid synthesis (Shefer et al., 1969). Investigators have reported 

increased excretion of bile acids following excessive absorption of choles

terol in rat and dog (Bistschy and Wilson̂  1970)= 

Iiiduculùn of bile acid synthesis by cholesterol appears to be at the 

level of cholesterol 7 a-hydroxylase. When cholesterol was added to the 

diet, cholesterol 7 a-hydroxylase activity was increased, but enzyme activ

ity continued to vary diurnally (Ilitroupolos et al., 1973). 
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Diurnal control Diurnal rhythmlclty in bile acid production from 

cholesterol was first Indicated in work by Chevallier and Lutton (1966). 

Following administration of 26-*̂ C-chole8terol, expired was elevated 

at night. It was later demonstrated that cholesterol 7 «-hydroxylase was 

subject to diurnal variation with maximal activity at about 8 P.M. and min

imal activity at noon (Danielsson, 1972). 

Diurnal cycles of cholesterol and bile acid synthesis are similar 

(Bortz et al., 1973; Bortz and Steele, 1973; Mltroupolos et al., 1973). 

Presumably alterations In normal lighting and feeding would reverse rhyth

mlclty of cholesterol 7 a-hydroxylass as it reverses rhythmlclty of HMG-

CoA reductase (Edwards et al., 1972; Edwards and Gould, 1972). Edwards 

and Gould concluded that the daily rise in HMG-CoA reductase activity was 

due to ingestion of food. The new cholesterol produced may cause an in

crease in cholesterol 7 or-hydroxylase activity. 

Influence of Dietary Variables on Cholesterol Metabolism 

Dietary fat 

Cholesterol biosynthesis Early attempts to demonstrate an effect 

of fat feeding upon cholesterol biosynthesis were hampered by a lack of 

knowledge of the biochemistry of cholesterol biosynthesis and the diurnal 

alteration of synthesis. The studies of Brice and Okey (1956) and Russell 

et al. (1962) did not yield conclusive data on the effect of fat intake on 

incorporation of labeled acetate into liver lipid. Brice and Okey measured 

cholesterol biosynthesis during the diurnal low. Russell and coworkers 

used labeled mevalonate as a precursor of cholesterol biosynthesis. The 
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major site of control of cholesterogenesis has since been shown to occur 

prior to mevalonate. 

Concentration of dietary fat Investigators have demonstrated 

increased Incorporation of labeled acetate into cholesterol in liver slices 

following dietary treatment with fat compared to zero fat containing diets. 

However, these data arc questionable because the zero fat diets may have 

led to an essential fatty acid deficiency (Mukherjee and Alfin-Slater, 

1958). Acetate incorporation into cholesterol following dietary treatment 

with zero fat or 30% hydrogenated coconut oil was depressed by 90% compared 

to controls fed 15% cottonseed oil. The addition of only 100 mg linoleic 

acid daily to either the fat-free or the hydrogenated coconut oil diet in

creased cholesterol synthesis in these groups to almost the level of con

trols . 

Linazasoro et ai. (1958) and Kill et al. (1960) fed ssrc fat com

pared with fat containing diets. Diets were fed for only 3 days; thus the 

possibility of essential fatty acid deficiency in the zero fat group was 

eliminated. Fifteen percent corn oil, Wesson oil. Snowdrift or lard diets 

were compared with a zero fat diet. Fat feeding was accompanied by a de

crease in hepatic lipogsnesis. This decrease was followed 12 hours later 

by Increased hepatic cholesterogenesis. 

The relatively long period required for increased cholesterogenesis 

after feeding has been reported by other investigators under conditions of 

controlled feeding. Although fat feeding produced an early accumulation of 

fatty acyl-CoA derivatives and acetyl-CoA with a decrease in fatty acid 

synthesis, no alteration in cholesterol synthesis was seen until much later 
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(Bortz, 1967). Corn oil (20%) was a relatively weak inducer of HMG-CoA 

reductase, but it caused a prolonged elevation of enzyme activity. The 

elevation began late in the fasting part of the diurnal cycle (Goldfarb 

and Pitot, 1972). 

Saturation of dietary fat At present, agreement is lacking 

as to the effect of degree of saturation of dietary fat on cholesterol bio

synthesis. However, there is strong support for enhanced cholesterogenesis 

by polyunsaturated fat. For example, greater rates of hepatic cholestero

genesis were reported with linoleic acid versus coconut oil (Merrill, 1959) 

with rapeseed oil, corn oil, erucic acid or oleic acid versus coconut oil 

(Wood and Migicovsky, 1958) and with erucic acid versus oleic acid (Carroll 

1959). 

Boyd (1962) showed accelerated biosynthesis of cholesterol with 10% 

linoleate or safflower oil as ccapared to 10% stearate. In another study, 

rat livers were perfused with labeled palmitate, oleate, linoleate or 

linolenate. Total radioactivity incorporated into free cholesterol was 

higher with linoleate and linolenate than with palmitate and oleate (xria 

et al., 1971). Dupont et al. (1972) found greater rates of synthesis with 

corn oil than with beef tallow. 

The data of Reiser et al. (1963) contradict available evidence that 

polyunsaturated fat increased cholesterol biosynthesis. The authors fed 

30% fat diets for 2 weeks. Fat sources compared were tributyrin, tri-

caproin, tricaprylin, trilaurin, trimyristin, tripalmitin, triolein, tri-

linolein, lard, butter oil, safflower oil and a synthetic mixed triglycer

ide. Trilinolein and safflower oil depressed cholesterogenesis most. Tri-
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palmitin gave the highest rate of cholesterol biosynthesis in their study. 

Interpretation of this study is difficult because rats were injected 

with labeled acetate at 8 A.M. and sacrificed 1 hour later. At 8 A.M. ani

mals should have been near their daily nadir for cholesterol biosynthesis. 

Furthermore, the poor digestibility of many of the fats fed make compari

sons between fats difficult. 

Matthiaŝ  recently indicated that he and his coworkers fail to find 

differences in synthesis of cholesterol between safflower oil and beef 

tallow fed rats. They have used alanine, glucose and acetate as labeled 

precursors of cholesterol. 

Control of cholesterol biosynthesis by fat Work on the causa

tive relationship between dietary fat and rates of cholesterogenesis has 

not yielded a unified theory, though a number of relationships have been 

reported. Sortz (1967) looked at the time relationship between decreased 

fatty acid synthesis and increased cholesterogenesis following fat feeding. 

He concluded that some mechanism other than surplus of substrate must ex

plain increased cholesterol biosynthesis secondary to fat feeding. 

Tormanen et al. (1975) recently demonstrated that HMG~CoA reductase 

has at least two binding sites for NADPH. Preincubation of enzyme with 

NADPH yielded a very high specific activity enzyme. Physiological condi

tions . such as obesity, in which levels of NADPH are elevated may result in 

maximally activated KKG-CoA reductase (Tcraancn et al., 1975); Hypertri-

glyceridemic individuals synthesized about 3 times as much cholesterol as 

did normotriglyceridemic subjects (Sodhi and Kudchodkar, 1973). Plasma 

Matthias, Colorado State University, personal communication,1975. 
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free fatty acid concentrations and endogenous synthesis of cholesterol were 

highly correlated. 

The normal cycle of cholesterogenesis following dietary fat consump

tion required 24 hours to establish (Hill et al., 1960). Synthesis of 

HMG-CoA reductase may be induced by fat flow to the liver following fat 

feeding (Bortz et al., 1973). 

It is not known whether degree of saturation of dietary fat influences 

cholesterol biosynthesis; or if it does, if the Influence is secondary to 

altered rates of intestinal absorption or transport of fat into the liver. 

If absorption played â role It would be necessary to postulate differences 

in rates of absorption between polyunsaturated and saturated fat sources. 

Some investigators have indicated that rates of fat absorption are depen

dent upon chain length and degree of fat saturation (Steenbock et al., 

1936; Deuel and Hallman, 1940; Deuel et al., 1941). More recently, 

McGovern and Quackenbush (1973b) found no evidence that safflower oil and 

beef tallow were absorbed at different rates. 

The effect of saturation of dietary fat on cholesterogenesis is com

plicated by the fact that vegetable fats, fed for their polyunsaturated fat 

content, contain plant sterols. The sterols have been shown to influence 

hepatic cholesterogenesis5 and are discussed in a later subsection. 

Excretion of cholesterol and bile acids Fecal losses of neutral 

and acid steroids account for most body steroid loss. Neutral steroids in

clude cholesterol and metabolites of cholesterol formed by intestinal bac

teria. Coprostanol is the predominant bacterial metabolite recovered in 

feces. Acid steroids in excreta originate from bile acids synthesized in 
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the liver which are not reabsorbed during enterohepatic circulation of bile 

acids. 

Bile acid excretion Some animal species may respond to un

saturated fat by increasing degradation of cholesterol to bile acids. 

There is evidence that such a response occurs in rat and man. Substitution 

of safflower oil for butterfat (Moore et al., 1968) or sunflower seed oil 

for butterfat (Antonis and Bersohn, 1962) raised bile acid excretion sig

nificantly in humans. Connor et al. (1969) fed cholesterol free diets 

with either cocoa butter or corn oil to normolipemic men. Bile acid excre

tion »»as increased significantly by polyunsaturated fat feeding. Further

more, the loss of acid and neutral fecal steroids after corn oil was twice 

as great as that calculated to leave the plasma. 

The effect of polyunsaturated fat on bile acid excretion appears to be 

associated with a change in bile acid half life in both rat and human. 

Corn oil feeding decreased cholic acid half life in human subjects (Gordon 

et al., 1964; Lindstedt et al., 1965). Safflower oil versus beef tallow 

stimulated cholate formation and shortened its half life in rats (McGovsrn 

and Quackenbush, 1973a). Rat bile was collected directly using bile duct 

cannulation. In rats fed safflower oil versus beef tallow, output of bile 

acids from the liver and conversion of labeled cholesterol to bile acids 

were bignlfIcàûuly increased (McGcvcrn and Quackenbush; 1973c)- Further

more, conversion of cholesterol oleate to bile acid was 40% higher with 

safflower oil compared to beef tallow. 

Wilson and Siperatein (1959) reported similar excretion of labeled 

bile acids after diets which were either fat-free or contained com oil or 
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lard. This finding is in contrast to most reports in the literature. 

Caution should be used in interpreting differences in bile acid excre

tion as the result of degree of fat saturation, since polyunsaturated fats 

are of vegetable origin and contain plant sterols. The influence of plant 

sterols on bile acid synthesis will be discussed later. 

Qualitative changes in bile acids with polyunsaturated fat feeding 

have also been noted. Lindstedt et al. (1965) demonstrated an increased 

cholate to chenodeoxycholate ratio in excreta of humans fed com oil ver

sus butterfat. McGovern and Quackenbush (1973a) showed a similar increase 

in this ratio in bile of rats fed ssffloijsr oil compared with beef tallow. 

Neutral steroid excretion Excretion of neutral steroid may 

be increased in response to polyunsaturated fat sources. But this response 

is usually less marked than the increase seen in bile acid excretion. In 

human subjects increased neutral steroid excretion has been found with corn 

oil versus cocoa butter (Connor et al., 1969) and with safflower oil com

pared to hutterfat (Moore et al., 1968). 

Neutral steroid excretion was increased with corn oil compared to 

butterfat, but primarily as a result of elevated elimination of plant ster

ols and their metabolites. Coprostanone and (or) cholesterol excretion in

creased with com oil compared fco butterfaE, although coprcstanol was the 

predominant neutral steroid found (Enerofch eL al., 1564). 

Control of steroid excretion by fat Bile acid synthesis may 

be proportional to liver cholesterol concentration. Feeding of cholesterol 

and polyunsaturated fats have been shown to increase both liver cholesterol 

concentration (McGovern and Quackenbush, 1973b) and bile acid synthesis 
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(Gordon et al,, 1964; Lindstedt et al., 1965; McGovern and Quackenbush, 

1973c). The cellular events of the relationship are not understood. 

Increased bile acid production with unsaturated fat sources Is not 

necessarily due to the degree of unsaturatlon alone. Plant sources of fat 

contain sterols which may Increase bile acid excretion independently of 

fat saturation (Sprltz et al., 1965; Antonis and Bersohn, 1962). In most 

studies, however, no attempt has been made to account Independently for 

variation due to fat saturation and plant sterol. 

Although excretion data on bile acids have been discussed here as if 

this parameter were a direct Indicator of bile acid synthesis, rates of 

synthesis as well as secretion of bile acids could be influenced by the 

dietary fat source. Furthermore, reabsorption of bile acid could be modi-

fled by dietary fat. Substitution of safflower oil for beef tallow In-

crêaaed conversion of cholesterol to bile acids by 13̂ 6% while secretion 

of acid label from the liver was Increased by only 8.6% (McGovem and 

Quackenbush, 1973c). Thus it would appear that hepatic synthesis of bile 

acids was increased while enterohepatlc circulation rates of bile acids 

were reduced with safflower oil compared to beef tallow. 

Other dietary constituents 

Several dietary constituents other than fat have been variables in the 

studies to bft presented. Plant sterols, fibers and protein level appear 

to Influence cholesterol metabolism. Some documentation of their influence 

on cholesterol metabolism will be presented here; where possible a brief 

statement as to underlying mechanism of affect will be given. The studies 

presented here are examples and do not constitute a comprehensive review 
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of the literature. 

Plant sterols Interest In plant sterols In relation to cholesterol 

metabolism was stimulated by the finding that ingestion of 3-sitosterol de

creased serum cholesterol concentration (Beveridge et al., 1958; Betzien et 

al., 1961). It was postulated that the underlying mechanism was due to a 

competition of plant sterols with cholesterol for absorption from the gut. 

However, this idea has been questioned recently. Sylven and Borgstrom 

(1969) and Subbiah and Kuksis (1973) failed to produce evidence for a mutual 

interference of cholesterol and sitosterol absorption. 

The lowering of plasma and tissue cholesterol associated with even 

modest intakes of sitosterol could be due to extrabsorptive effects of the 

plant sterols. Sitosterol can Influence cholesterol metabolism. Intra

peritoneal injection of 5 mg g-sltosterol daily for 25 days, to circumvent 

Intestinal absorption, increased cholestsrogenesis in rats (Geraon et al.. 

1964). Recently, Subbiah (1973) demonstrated that between 22 and 32% of 

plant sterols consumed by rats were absorbed. In another study, dietary 

soy sterols increased the incorporation of acetate into cholesterol by rat 

liver slices and prevented negative feedback by cholesterol on hepatic 

cholesterogenesis (Fiahllr-Mates et al.. 1973). 

It appears that plant sterols may Increase bile acid production. Syn

thetic fats with fatty acid patterns resembling corn or coconut oils de-

prêBBêd excretion of bile acids compared with excretion following consump

tion of natural, stesol-coatalaiag fat sources (Sprits et al., 1965). 

Plant sterols may also modify neutral steroid ezcretion. Fecal neu

tral steroids were elevated with dietary fats containing plant sterols 
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compared with animal fat (Eneroth et al., 1964; Connor et al., 1969; 

Moore et al., 1968). Sitosterol compared to cholesterol feeding nearly 

doubled the quantity of neutral steroids excreted (Subbiah and Kuksis, 

1973). 

Fibers Fiber is another dietary constituent which has been impli

cated in cholesterol metabolism. The general class of fiber includes cel

lulose, hemicellulose, pentosan, lignin, pectin and certain fatty substances 

and gums. Cereal grains contain approximately 2 g of fiber/lOO g. Leg

umes contain from 3-5 g of fiber/100 g (Trowell, 1972). Consumption of 

large quantities of natural fiber have been associated with a hypocholes-

terolealc effect. Saponin in chick diets (Griminger and Fisher, 1958) and 

chick peas in human diets (Mathur et al., 1968) decreased serum cholester

ol concentrations. 

Séiûlpurified diets fed to laboratory rat« usually contain cellulose 

as a bulking agent. There is evidence that the removal of natural fiber 

and replacement with the fiber cellulose may have a hypercholesterolemia 

effect. A number of laboratories have reported increased serum cholester

ol concentrations with semisynthetic diets in a variety of species. Liquid 

diets fed to calves versus liquid diets to which some dry feed had been 

added resulted in elevated serum cholesterol concentrations (Jacobson et 

al.. 1973). Elevated serum cholesterol levels were also reported in ba

boons fed âèmisynîhetie diets compared to diets consisting of bread, fruit 

and vegetables (Kritchevsky et al., 1974). Similar results were found 

when rats were fed semisynthetic diets compared to stock diet (Balmer and 

Zilversmit, 1974). Serum cholesterol concentrations were increased in 
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humans and rats consuming baked products containing cellulose. Carcass 

cholesterol concentrations were also increased in rats. Cholesterol con

centrations Increased in proportion to the cellulose content of the prod

ucts consumed (Ahrens et al., 1972). 

The effects of some fibers on serum cholesterol concentration appear 

to be due to altered (increased or decreased) rates of cholesterol catab-

olism. Semisynthetic diets compared to normal or stock diets were accom

panied by a decreased conversion of cholesterol to bile acid (Kritchevsky 

et al., 1974; Balmer and Zilversmit, 1974). Rats fed semipurified diets 

had slower rates of 7 a-hydrcsylation of liver cholesterol than did rats 

fed stock diet (Johansson, 1970). 

Certain dietary fat sources may overcome decreased bile acid excretion 

in response to low-fiber or fiber-free diets. In one study, fiber-free 

diets decreased bile acid excretion with butterfat but not with diets con

taining oil or hydrogenated oil (Antonis and Bersohn, 1962). 

Other fibers may interfere in absorption of cholesterol. Saponins, 

which are widely distributed, particularly in leguminous forage plants such 

as alfalfa, form insoluble complexes with cholesterol in the gut. 

Protein level Protein level is another dietary factor implicated 

In cholesterol saetabcliss. Plasaa and liver cholesterol concentrations 

wet'é higher ori low protein than en high protein diets» but similar rates 

of cholesterol absorption were found at both levels of protein intake 

(Kenney and Fisher, 1973). Yeh and Leveille (1973) concluded that the hypo-

choiesterolemic effect of high levels of protein in chicks was mediated 

through rapid removal of cholesterol from the blood and increased excretion 
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in the feces as cholesterol and bile acids. 

Influence of Periodicity of Eating on Cholesterol Metabolism 

Serum cholesterol concentrations 

Our interest in meal pattern as a variable in the study of cholesterol 

metabolism stems largely from observations that consumption of the daily 

food allotment in a limited time period results in increased serum choles

terol concentration. 

Although Okey et al. (1960) failed to observe differences in mean 

serum cholesterol levels between rats fed ad libitum and those fed for 3 

hours per day, others have consistently observed an increase in serum cho

lesterol in a variety of species including rats. Thus chicks allowed ac

cess to food for 2 1-hour periods per day had higher serum cholesterol con

centrations than did chicks fed ad libitum (Cohn et al., 1961). Monkeys 

fed for 2 or 3 1-hour periods per day had elevated serum cholesterol com

pared to animals allowed to consume their food ad libitum (Gopalan et al., 

1962)= 

The effect of limited access to food on serum cholesterol levels may 

be transitory. Leveille and Hanson (1965) fed chicks for 2 1-hour periods 

per day. After 3-6 weeks, plasisa cholesterol concentrations were elevated, 

but differences disappeared after the birds had been on the regimen for 10 

weeks. However, Gopalan et al. (1962) found a larger difference between 

serum cholesterol concentrations of ad libitum fed monkeys at 8 than at 4 

weeks. Reeves and Arnrich (1974), in this laboratory, found that the dif

ference between serum cholesterol concentrations of ad libitum and meal 
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fed rats was more significant at 30 than at 10 days after feeding. 

Data on humans are contradictory. Six individuals consuming 6 in

stead of 3 meals per day had decreased serum cholesterol levels (Cohn, 

1964). In a recent study, Wadhwa et al. (1973) could not find an effect 

of meal pattern on serum cholesterol levels in man. 

Synthesis of cholesterol 

Few attempts have been made to assess the influence of meal feeding 

on cholesterol metabolism. Our literature search yielded five studies in 

which feeding frequency was limited. These studies were published between 

1959 and 1966, before the diurnal control of cholesterol biosynthesis had 

been recognized. 

Increased cholesterol biosynthesis followed Increased utilization of 

fat, either from diet or from body stores (Dupont and Lewis, 1963). In 

another study, caloric allowances were restricted to 80, 60, 40 and 20% of 

the amount of food consumed ad libitum (Dupont, 1965). Caloric deficit 

and cholesterol biosynthesis were positively correlated. 

In contrast, Cockburn and Van Bruggan (1959) showed that a 45 minute 

feeding period decreased incorporation of labeled acetate into cholesterol 

in gut, liver, carcass and skin in vivo. In the same laboratory, in vitro 

choiesterogenesis was maximal in the 2 hour fasted rat compared to ad libi

tum fed controls. 

Although the bulk of the evidence supports the hypothesis that de

creased feeding frequency increases cholesterogenesis, further study is 

needed. 
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Excretion 

Data available on the catabolism of cholesterol to bile acids, and the 

excretion of these metabolites in response to caloric restriction, come ex

clusively from one laboratory. Bobek et al. (1973b) compared ad libitum 

fed rats to rats fed for 2 hours per day. A number of parameters measured 

during the 4 days following injection of 4-̂ Ĉ-cholesterol were identical 

with both feeding patterns. They were specific activities of cholesterol 

in serum, liver, adrenal gland, small intestine and carcass; biological de

cay of serum cholesterol radioactivity; total excretion of radioactivity; 

distribution of bile acids and neutral steroids In excreta. 

In another study, meal feeding shortened plasma cholesterol half life 

and raised fractional cholesterol turnover rate following injection of 26-

^̂ C-cholesterol (Bobek et al., 1973a). 

The experimental model used by Bobek and coworkers to study cholester

ol metabolism with decreased feeding frequency may be criticized since 

serum and liver cholesterol concentrations are not altered by meal pattern 

(Bobek et al., 1972; Bobek et al., 1973a). 

It is difficult to get a comprehensive picture of the influence of 

meal pattern on cholesterol metabolism. The problem is open to further 
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METHODS AND PROCEDURES 

Selection and Treatment of Animais 

Experimental design 

Three studies were designed to evaluate the effects of periodicity of 

eating, variation in dietary fat and level of dietary protein on food ef

ficiency, lipogenesis, tissue cholesterol levels and specific parameters 

related to cholesterol metabolism. 

Pre-experlmental Male adult Wistar rats from the stock colony of 

this department were used in all three studies. During the prê experlmec 

tal period, from weaning until they reached 500 to 525 g body weight at 4 

to 5 months of age, rats were fed a modified Steenbock XVII ration (Table 

Ih 

At this weight animals were transferred to a room where a reversed 

lighting schedule was maintained for the convenience of the researchers. 

Dark hours were maintained between 9 A.M. and 9 P.M.; light hours between 

9 P.M. and 9 A.M. Each aniEsl was housed individually in a one-half inch 

mesh wire cage. All laboratories were maintained at 24±1® with a relative 

humidity of approximately 40%. 

Dietary restriction After a 16 hour fast, 300 g animals were given 

a depletion diet at 9 A.M. the following moralng. The depletion diet con

tained essentially 100% of calories from com starch. Daily supplements 

of a-tocopherol in corn oil and cod liver oil were given to maintain essen

tial fatty acid and fat soluble vitamin sufficiency in the experimental an

imals. Animals received dally 0.75 mg DL-a-tocopherol made to 50 mg with 
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Table 1. Stock ration for maie rats: Modified Steenbock XVII 

Dietary component Percent 

Corn meal̂  48.3 

Linseed meal̂  13.8 

Skim milk̂  10.3 

Wheat germ** 8.6 

Yeast, brewers* 8.6 

Casein, high protein* 4.3 

Alfalfa meal® 1.7 

NaCl̂  0.4 

CaCOg plus trace elements® 0.4 

Corn oil̂  3.5 

Corn oil plus Vitamin Dĝ  0.1 

Ĝeneral Biochemicals, Inc., Chagrin Falls, Ohio, 

K 
"Froning and Deppe Elevator, Âmes, Iowa. 

D̂es Moines Cooperative Dairy, Des Moines, Iowa. 

Ĝeneral Mills, Inc., Minneapolis, Minnesota. 

"National Alfalfa, Lexington, Nebraska. 

f 
Local grocer. 

-Hatheson Coleman and Bell, Division of Matheson Company, Inc., 
Norwood, Ohio. 

^̂ zola, Best Foods Division Commercial Products Company, New York, 
ÎÎ£V Yorlc» 

Ĉrystalline Vitamin D- diluted with corn oil to give 5Û }Jg vitamin 
D̂ /kg diet. 

give 5Û }Jg vitamin 
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corn oil and 50 mg cod liver oil. A water soluble vitamin mix was also 

given daily. Composition of the mix and size of dose are given in Table 

2. Composition of the OF-OP (depletion) diet is given in Table 3. 

When rats reached 400 or 380 g body weight (Experiments 1 and 3, and 

Experiment 2, respectively) calories were restricted severely. Two 2.5 g 

portions of OF-OP diet were given, one at 9 A.M. and one at 5 P.M. This 

feeding schedule was followed until the rats reached 300 g body weight. 

At this point, animals were either sacrificed (depleted controls) or refed 

for 10 days. Level and source of dietary fat, meal pattern and level of 

protein were Creatwent variables. 

Realimentation Animals were assigned to treatment groups so that 

days required to deplete the animals from 500 to 300 g body weight were 

equalized for each treatment within the study. The dietary and meal pat

tern variables comprising treatments for each study are shown in Table 4. 

These variables will be discussed in this section under experimental diets. 

Radiotracers In the last two studies 2.5 or 5 UC 4-̂ Ĉ-cholesterol 

and 50 y.C Ĥ-aĉ tate were injected intraperitoneally to measure acute turn

over of cholesterol and cholesterol biosynthesis respectively. The labeled 

cholesterol was injected on the morning of the 5th day of refeeding. On 

the 10th day of refeeding, all animals in Experiment 2 were fasted from 

5 P.M. to 9 A.M. In the 3rd study, ad libitum (AL) fed animals were al

lowed access to food from 5 P.M. to 9 A.M. as was their usual pattern. In 

both experiments, animals were allowed food from 9 A.M. to 10 A.M. They 

were then injected with labeled acetate and killed 2.5 hout Inter, 

according to Dupont et al. (1972). 
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Tabic Composition of water soluble vitamin mixture 

Vitamin 
Composition per 
rat per day 

Composition per 
1000 doses 

Thiamine HCl* 40 yg 40 mg 

Riboflavin 60 yg 60 mg 

Pyridoxine HCl 40 pg 40 mg 

Ca-pantothenate 100 yg 100 mg 

Nicotinic acid 500 Ug 500 mg 

Folic acid 8 yg 8 mg 

Biotin 1 yg 100 mg Biotin- ̂  
dextrine mixture 

Vitamin .75 yg 750 Kg g 
mannitol mixturê  

Ascorbic acid 1 mg 1 g 

Choline chloride 5 mg 5 g 

Inositol 10 mg 10 g 

p-Amino Benzoate 10 mg 10 g 

Dextrin to make 500 g 

All vitamins were obtained from General Biochemicals» Inc., 
Chagrin Falls, Ohio. 

Biotin was mixed with dextrin so that 100 mg of the mixture 
yielded 1 mg biotin. 

Ĉommercially available Vitamin B.. in sannitol furnished 0,1 mg 
8̂ 2 per 100 g of mixture. 
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Table 3. Composition of experimental diets 

Depletion Diets refed ad libitum 
_ diet or for 8 of 24 hours for 10 days 

Dietary 
component 

OF-OP OF-P 0F-4P 20S0-P 20S0-4P 20BT-P 20BT-4P 

% weight 

Corn starch* 93.5 88.0 72.7 66.0 46.8 66.0 46.8 

Safflower oll̂  0 0 0 20.0 20.0 0 0 

Beef talloŵ  0 0 0 0 0 20.0 20.0 

Lactalbumln̂  0 5.1 20.4 6.4 25.6 6.4 25.6 

Willlam-Brlggs 
salt 3.5 3.5 3.5 4.4 4.4 4.4 4.4 

Non-nutritive 
fiber® 2.8 2.8 2.8 3.0 3.0 3.0 3.0 

NaCl, iodized 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Cholesterol - 0.02 0.02 0.02 0.02 - -

% kcal 

Corn starch 100 94.5 78.1 56.2 39.9 56.2 39.2 

0 0 0 38.3 38.3 38.3 38.3 

Lactalbumin 
protein 0 4.3 17.1 4.2 17.0 4.2 17.0 

Ârgo, Best Foods Division Commercial Products Company, New York, 
New York. 

"PVO International Corporation, Richmond, Cal. ̂  0.1% a-tccopherol. 

"Tocopherol added, Osear Meyer, Madison, WlsconRin. 

7̂8% protein. Nutritional Biochemical Corporation, Cleveland, Ohio. 

Ĝeneral Biochemicals, Inc., Chagrin Falls, Ohio. 
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Table 4. Experimental protocol 

Treatment Experiment 

Pre-experimental 

S t o c k  -  A L  X X X  

Depletion 

OF-OP - MF X X 

Refeeding 

OF-P AL X X -

- MF X X -

OF—4P — AL X — — 

MF X - -

20S0-P - AL X X A 

MF X X X 

20S0-4P - AL X — X 
MF X - X 

20BT-P - AL — A A 

MF - X X 

20BT-4P - AL w X 
MF - - X 

Stock ÂL — X sa 
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Diets 

Stock diet The composition of the stock diet, a modified Steenbock 

XVII, is listed in Table 1. Animals consumed this diet ad libitum from 

weaning until they weighed between 500 and 525 g (the pre-experimental pe

riod) . The stock diet was supplemented weekly with 15 g of lean ground 

beef, 20 g of carrot, 10 g of cabbage, 165 ug retinyl acetate and 1.25 mg 

Vitamin D̂ . The two fat soluble vitamins were given directly by mouth in 

50 mg corn oil. 

Experimental diets The compositions of experimental diets fed to 

depleted rats are given in Table 3» Percentage contributions of com 

starch, fat and lactalbumin protein to caloric intakes are also listed. 

Protein, salt mix and non-nutritive fiber were equalized on a caloric rath

er than a weight basis. 

Fat and protein level were varied in these studies. Dietary fat pro

vided 0 (OF) or 38.3 (20S0 or BT) % of calories. Fat calories were pro

vided by safflower oil (SO) or beef tallow (BT). Lactalbumin was the 

source of dietary protein for all refed diets, except the stock diet used 

for refeeding (Experiment 2). Two levels of dietary protein, 4.2 (?) and 

17.0 (4P) % of calories, were fed. In 4P diets, calories from lactalbumin 

protein were increased compared to P diets at the expense of calories from 

cornstarch. 

In addition to the experimental diets, water soluble and fat soluble 

vitamin supplements were given daily. The water soluble vitamins and doses 

are given in Table 2. Vitamins A and D were furnished by 50 ag cod liver 
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oll̂ . Vitamin E was provided as DL-a-tocopherol acetate diluted with com 

oil̂  so that 50 mg daily provided 0.75 mg DL-a-tocopherol acetate. Fat 

soluble vitamins were measured using a dropper calibrated so that 2 drops 

closely approximated 50 mg. 

Meal patterns 

Diets were fed on two meal schedules. Rats were either allowed access 

to a given diet for 24 hours per day (AL) or for an 8-hour period (from 9 

A.M. to 5 P.M.) out of 24 hours (MF). Food was given to MF animals daily 

at the beginning of the dark cycle. The majority of animal handling was 

done between 8 and 9 A.M. in the last hour or the light cycle. 

Autopsy 

All rats were sacrificed following injection with sodium pentobarbi-

tol̂ L In Experiment 2 all animals were injected with 50 mg while in Exper

iments 1 and 3, 25 mg per 100 g body weight was injected. When the animais 

were unconscious» blood was removed by heart puncture. One drop of DL-a-

tocopherol solution (1.6 mg/ml ethanol) was added per 2 ml blood to retard 

lipid oxidation. After clotting, blood samples were centrifuged in a clin

ical centrifuge at 4" for 20 minutes. Serum was carefully lifted out with 

a Pasteur pipette and Scored In tightly covered vials at -20* for «erum 

analyses. 

Ŝquibb Cod Liver Oil, USP. manufacturer guarantees 1700 lU of Vitamin 
A and 170 lU Vitamin D per g of oil. 

O 
"%azola, Best Foods Division Commercial rroduets Company, New York, 

New York. 

3 
Nembutol sodium, Abbott Laboratories, Chicago, Illinois. 
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Liver was excised immediately after removal of blood, weighed and 

quick frozen in liquid nitrogen. Heart, kidneys, epididymal fat and small 

and large intestines were also removed, weighed and quick frozen in liquid 

nitrogen. All tissues and the remaining eviscerated carcasses were heat 

sealed in Kapak poucheŝ  and stored at -20° for later analysis. Feces ex

creted during the six days following injection of labeled cholesterol were 

also stored at -20° for later analysis. 

Tissue Analysis 

Serum 

Lipid extraction In Scperiment 1, serum lipid was extracted accord

ing to the method of Sperry and Brand (1955). After extraction, samples 

were evaporated to dryness under nitrogen at 35-40° and transferred to 

vials with approximately 5 ml chloroform. Lipid samples were stored under 

nitrogen in tightly sealed vials at -20° until used for column separation 

of lipid classes. 

Separacion of lipid classea Serum lipid extracts were rasovëd froz 

storage, evaporated to less than 200 yl under nitrogen, and fractionated 

according to the method of Lis et al. (1961). The cholesterol ester frac

tion and triglyceride fractions were checked for purity using thin layer 

chromatography. 

Esterification Cholesterol ester fstty acids were methylated by a 

modification of Stoffel et al. (1959). Two % sulfuric acid in methanol 

was used to esterify cholesterol ester fatty acids. Hexane was used to ex

tract the methyl esters of fatty acids. 

K̂apak Industries, Inc., Bloomington, Minnesota. 
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Gas-liquid chromatography A Beckman GC-72-5 gas chromatograph 

equipped with dual flame ionization detectors and connected to Infotronics 

CRS 208 electronic integrator was used for analysis of fatty acid methyl 

esters. Instrument conditions for analysis were; stainless steel columns, 

10 feet by 1/8 inch, packed with 3% ethylene glycol succinate on Gas-Chrom 

G 100/120 mesh HP; column temperature, 180"; injector temperature, 220°; 

detector temperature, 220°; detector line temperature, 250°; carrier gas 

flow, 30 ml per minute. 

Cholesterol analysis Cholesterol was analyzed colorimetrically 

following digitonin precipitation by the method of Sperry and Webb (1950). 

Cholesterol was also analyzed radiochemically in Experiments 2 and 3 fol

lowing digitonin precipitation and dissolution of the precipitate in meth

anol. Serum aliquots of 1 ml were extracted into acetone-ethanol (1:1). 

In Experiment 1, 2 6-ml and 2 3-ml aliquots of the extract were used for 

colorimetric analysis of serum free and total cholesterol (mg/dl), respec

tively. In Experiments 2 and 3, 6 3-ml aliquots were used, 2 for free and 

4 for total cholesterol determination. The 3-ml aliquots used for free 

cholesterol were kept proportional with Experiment 1 by the addition of 1.5 

ml digitonin solution to 3 ml extract (Instead of 3 ml digitonin solution 

to 6 ml extract). After the acctcnc-cther (1:2) wash, 2 of the aliquots» 

ptêpateù a» for total cholesterol detarzinaticn, were transferred quanti

tatively with methanol to scintillation vials. Methanol in excess of 1/2-

1 ml was evaporated off. 
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Scintillation counting Scintillation cocktail (either 15 ml Spec-

1 2 
trafluor PPO-POPOP or Spectrafluor Butyl PBD in toluene) was added to 

each sample. These samples were counted in duplicate on a Packard Tri 

Garb Liquid Scintillation Spectrophotometer (Model 3320) equipped with an 

external standard. External standardization and/or Internal standardlza-

tlon with and ^̂ C-toluene were used to correct for decreased efficiency 

due to quenching. Channels and gains were set for simultaneous counting 

of and 

Liver 

Total lipid extraction The method of Folch et al. (1957), as 

modified by Stadler (1969) was used to extract total hepatic lipid. The 

extract was used for gravimetric determinations of lipid, separation of 

lipid classes (Experiment 1). ̂ H-acetate Incorporation into fatty acid and 

cholesterol, and colorimetric and radiochemical analyses of cholesterol 

(see scheme Figure 2). 

Separation of lipid classes A modification of the method of Hirsch 

and Ahrens (1958) was used to separate cholesterol ester from total hepatic 

4 
lipid. Silicic acid was activated by Stadier's (1969) modification of 

Borgstrom's (1952) procedure. Each column used 6 g silicic acid. Between 

""̂ Amereham/Searle Corporation, Arlington Heights. Illinois. Concentra
tion of cocktail was mâdê 1 1/2 times standard. 

2 
Àmersham/Searle Corporation, Arlington Heights, Illinois. Concentra™ 

tlon of cocktail was made as recommended. 

3 
Packard Instrument Company, Downers Grove, Illinois. 

4 
Analytical grade, Mallenchrodt, 100 mesh, Mallenchrodt Chemical Works, 

St. Louis, Missouri. 
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Liver 

(about 4 g) 

Folch, Lees, and Stanley extraction 

Aqueous wash 

(make to 25 ml) 

1 4  C-dpm conjugated bile 
acid per liver 

(2 1-ml aliquots} 

Total lipid extract 

(make to 10 ml) 

Û ml) 

Cholesterol 

(2 ml) 

It/ 

dpm total 
lipid 

(0.24 ml) 

Free DPS Total DPS 

(mg/g liver, (4 3-ml 
2 3-ml aliquots) aliquots) 

and '"c mg DPS'/g 
dpm in total liver 
DPŜ  ner liver 

%igitonin precipitable steroid. 

Figure 2. Schematic of liver analyses 
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90 and 120 mg of total hepatic lipid were used in each separation. Choles

terol ester was eluted with 120 ml of 1% diethyl ether in petroleum ether 

(b.p. 60-70°, redistilled). 

Esteriflcatlon The procedure used for preparation of methyl esters 

of cholesterol ester fatty acid was identical with that used for serum cho

lesterol fatty acid. 

Gas-liquid chromatography Gas-liquid chromatographic analysis was 

identical with that used for serum fatty acid analysis. 

Cholesterol A 2 ml aliquot, representing 1/5 of total liver lipid 

extract from approximately 4 g liver- was pipetted into a 25 ml volumetric 

flask. The choloroform was evaporated to dryness under nitrogen and ace-

tone-ethanol (1:1) was added to the mark. Six 3-ml aliquots of the ace-

tone-ethanol mixture were used, 2 for free and 4 for total cholesterol de

termination according to the procedure of Sperry and webb (1950). Two of 

the total cholesterol samples were transferred with methanol to scintilla

tion vials following an acetone-ether (1:2) wash. Samples were prepared 

and counted by the procedure described for serum cholesterol. The remain

ing samples were assayed colorimetrically according to the procedure of 

Sperry and webb (1950). 

Hepatic conjugated scid steroid-̂  **€ The aqueous wash (upper phAse) 

was quantitatively transferred to a 25 si volumetric flask and made to vol

ume with methanol. Two 1-ml aliquots were removed to scintillation vials 

and 15 ml scintillation cocktail was added to each vial. Samples were 

counted with channel and gain settings appropriate for double label count

ing of and *̂*0. An external standard curve of a quenched set of "̂̂ C 
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standards was used to correct for loss of efficiency. Data were expressed 

as ̂ '*C-dpin acid steroid per liver. 

Total hepatic lipid and '**0 A small aliquot of total hepatic 

lipid was counted to determine total liver lipid and The aliquot 

was pipetted into a scintillation vial, the choloroform was evaporated and 

scintillation fluid was added. Samples were solubilized in scintillation 

fluid without the addition of methanol. Counting and efficiency correc

tions were carried out as previously described for serum and liver choles

terol digitonide. 

Small intestine 

HomogenlzatIon and extraction Small intestine with contents was 

minced slightly and homogenized in chloroform-methanol (2:1) for 5 minutes. 

A Lourdeŝ  multi-mix homogenizer with a 250 ml stainless steel cup was used 

for the homogenization. Original homogenization was done with approximate

ly 100 ml of solvent. The homogenate was made to 200 ml with chloroform-

methanol giving a solvent to tissue ratio of 20:1. The hoaiogeniacé was 

shaken well. A 40 ml aliquot was removed rapidly and placed in a stainless 

steel centrifuge tube-- Samples were layered with nitrogen and capped. They 

2 
were centrifuged at -4° for 20 minutes according to Stadler (1969) to re

move the small amount of fragmented tissue. 

•̂ Brooklyn, New York. 

2 
International High Speed Refrigerated Centrifuge, Model HR 1, Inter

national Equipment Company, Boston, Massachusetts. 
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Conjugated acid steroid-̂  **0 The supernatant was poured into a 50 

ml glass stoppered centrifuge tube. Eight ml of distilled water were added 

to the chloroform-methanol extract. About 2 ml of chloroform-methanol 

(2:1) was used to rinse the precipitated tissue and the centrifuge tube. 

This rinse was added to the glass stoppered centrifuge tube. The entire 

mixture was shaken vigorously for 2 minutes. The tubes were centrifuged 

for 15 minutes at very low speed in an International Model EXD centri

fuge. The upper phase was quantitatively removed into two scintillation 

vials for ease of evaporation. An additional 5 ml water wash followed re

moval of the first wash. Samples were shaken for 1 minute and centrifuged 

as before. The upper phase was transferred to the same two scintillation 

vials. The upper phases were evaporated to dryness under nitrogen in an 

N-Evap̂  at 75-80*. Contents of both scintillation vials were recombined. 

They were transferred with methanol to the same 25 ml volumetric flask. 

Two l-ml aliquots were removed to clean scintillation vials. Scintillation 

cocktail was added to each vial. Counting and correction for efficiencies 

were carried out ag described for serum. 

Cholesterol Two methods were used for digitonin precipitable ster

oid preparation. The less complicated method was a modification of the 

procedure used for preparation of liver digitonin precipitable steroid. 

This method is described below. It was used for analysis in both Experi

ments 2 and 3. The washed chloroform-methanol extract was made to 25 ml 

and 6 3-ml aliquots were removed for each animal. These aliquots were evap

orated to dryness under nitrogen at between 30 and 35°. To each sample was 

Ôrganomation Association, Model 10, Worcester, Massachusetts. 
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added 3 ml acetone-ethanol (1:1). These aliquots were prepared for choles

terol analysis according to Sperry and Webb's (1950) procedure for serum 

lipid extract. Two samples were used for free and 2 for total chemical 

analysis of cholesterol. The remaining 2 samples were prepared as for to

tal cholesterol determination, rinsed and transferred with methanol to 

scintillation vials. Most of the methanol was evaporated off, cocktail 

was added and counting and quench correction done as for serum cholesterol 

digitonide. 

Another procedure used to extract digitonin precipitable steroid was 

a modification of the method of Grundy et al. (1965) for exuraetiori of 

fecal neutral steroids. This method was used only in Experiment 2. It 

compared favorably with that described by McGovem and Quackenbush (1973b) 

for extraction of neutral steroid from washed intestines. It also compared 

well with modification of the method of liver neutral steroid extraction 

outlined in detail above. 

A AO =1 aliquot of total small intestine homogenate was evaporated to 

dryness under nitrogen and sponified at 45* for 3 hours in 20 ml 1 N NaOH 

in 90% ethanol. After saponification, 10 ml water and 50 ml petroleum 

ether (Fisher Scientific, b.p. 37.7-48.9) were added. Four 4-ml aliquots 

were removed, and evaporated to dryness under nitrogen. Acetone-ethanol 

(1:1) and digitonin solution were added as for serum and liver cholesterol 

analysis. Digitonin precipitation yielded four total cholesterol samples. 

Two were used for colorimetric analysis and 2 were dissolved in methanol 

and counted as described previously for serum cholesterol digitonide. 
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Large Intestinal contents ànd fèces 

Homogenization Feces and large intestinal contents were washed in

to a 250 ml stainless steel cup attachment of a Lourdes multi-mix homogeniz-

er. Feces were diluted 4-5 times with water. The mixture was homogenized 

for 5 minutes, or until a homogenous mixture was obtained. The homogenate 

was made to 200 ml (100 ml for depleted controls, 500 ml for stock refed) 

in water with methanol added as needed to break foams formed. 

Aliquot preparation Two 5-ml aliquots were removed to small alumi

num weighing dishes and lyophilized̂  overnight. The dry material was 

crushed and carefully removed to a 250 ml centrifuge bottle. Transfer and 

rinsing were accomplished with 20 ml 1 N NaOH in 90% ethanol. 

Neutral steroid-̂  **0 Samples were stoppered and heated at 45° for 

1 hour in a water bath. Ten ml distilled water and 50 ml petroleum ether 

were added. The bottle was stoppered and shaken vigorously for 1 minute. 

The bottle was centrifuged at 1000 x g in an International Model EXD cen

trifuge. The upper phase was removed and the aqueous phase was reextracted 

two more times with 50 ml petroleum ether. Each extraction was followed by 

a 5 minute centrifugation at 1000 x g. The petroleum ether extracts were 

combined and backwashed with 10 ml of 1 N NaOH in 50% ethanol to remove 

any traces of acid steroid-̂  **0. The washed extract was evaporated to dry

ness en a steasi bath, transferred quantitatively to a Gcintillatior. vial 

and evaporated to dryness again. Scintillation cocktail was added as de

scribed earlier and samples counted in duplicate. Single label counting 

of fecal neutral-̂  **0 was done with channels set from 50-1000. Gains were 

Vi rtes Lyophilizer, Gardiner, New York. 
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set at 10 and 20 for channels 1 and 2, respectively, so that simultaneous 

counting at two gains occurred. Quench curves at these two gains were 

used. The optimum curve for each sample was used to correct for color 

quenching in fecal samples. 

Acid steroid-̂  **0 The aqueous phase remaining after petroleum 

ether extractions was acidified to pH 2 with concentrated HCl and extracted 

with 75 ml of chloroform-methanol (2:1) according to Grundy et al. (1965). 

Their rigorous saponification preceding chloroform-methanol extraction 

was omitted. The bottle was stoppered and shaken vigorously for 5 minutes 

at 1000 X g. The lower phase was removed and evaporated on a steam bath. 

The aqueous phase was extracted two more times with 50 ml chloroform. All 

three extractions were combined and evaporated to dryness. The viscous 

brown residue remaining was transferred to a 25 ml volumetric flask and 

made to volume with methanol. Two 1-ml aliquots were removed to scintil

lation vials and 15 ml scintillation cocktail was added to each aliquot. 

Samples --crc counted as for fecal neutral steroid-̂ '* C. 

Epldldymal fat 

Epididymal fat was extracted according to a modification of Stadler 

(1969) of the method of Fclch et al. (195?)= Total fat was determined by 

gravimetric analysis. In Experiment 2, an aliquot of total fat was evap

orated to dryness, scintillation cocktail added and samples counted for 

H-acetate incorporation Into fatty acid. Channel and gain settings 

appropriate for double label counting were used to correct for neutral 

steroid-̂  \c in total epididymal lipid. 
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Carcass 

1 
Homogenizatlon A modification of the method of Judge was used 

for homogeneous preparation of carcass (minus liver, epididymal fat and 

10 ml blood). Carcasses were autoclaved in a quart jar at 15 pounds 

pressure for 1 hour. The warm carcass was transferred carefully to a large 

preweighed 4 quart Waring blender. An amount of water approximately equal 

to the weight of the rat was used to rinse the jar. Finally the jar was 

rinsed with about 10 ml ethanol. 

Ihe rat carcass was blended on lowest speed for 10 minutes. Blender 

sides were scraped dovn with a spatula. The blender was turned to low, 

then to medium speed. Blending was continued for 15 minutes longer. Dur

ing the last 15 minutes, the blender motor was stopped two or three times 

to wash down lid and sides of the blender. The homogenate was cooled to 

25-35'. Blender and homogenate were weighed and weight recorded, xne 

mixture was blended for about 1 minute longer on low speed until well mixed. 

Samples ware taken for moisture and fat analysis with blending between sam

pling to keep the mixture homogeneous. 

Moisture Preweighed cups were used to dry samples of homogenate at 

68" for 48 hours under vacuum. Moisture (%) was calculated as below: 

Moisture(%) = 100 
(weight dry matter in aliquot z 100) 

weight rat in aliquot 

where weight rat in aliquot = 
fresh carcass weight 
weight of homogenate 

X weight of aliquot. 

Ĵ. Judge, unpublished data from this laboratory, 1970. 
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Carcass fat Carcass fat was determined by a modification of the 

method of Soderhjelm and Soderhjelm (1949) for fecal fat determination, 

using Mojohnnier flasks. Carcass fat (%) was calculated as the weight of 

fat in the aliquot times 100 divided by the weight rat in the aliquot (see 

moisture determination). 

Carcass hydrolysis Rat carcasses were saponified for 16 hours in 

10% NaOH with 95% ethanol at a temperature between 75 and 80% according 

to the method of Dupont et al. (1972). The solution was funnelled into a 

1000 ml volumetric flask and made to volume with 50% ethanol. Ten ml all-

quots were removed to 250 ml centrifuge bottles and 20 ml of 50% ethanol 

was added to each bottle. Fifty ml of petroleum ether (Fisher Scientific, 

b.p. 37.7-48.9°) was added and the mixture shaken well for 2 minutes. 

Samples were stoppered and centrifuged at 1000 x g for 5 minutes. Immedi

ately 4 4-ml aliquots were pipetted from the upper petroleum ether phase 

into 4 12-ml centrifuge tubes and evaporated to dryness under nitrogen. 

J.O CJ. «-hs 4 EvspsrstEd sddêd 6 •»! «estons—stksnol 

(1:1) and 3 ml digitonin solution and 1 drop ox 10% acetic acid. Precipi

tation was allowed to continue overnight. Samples were carried through 

the cholesterol analysis according to Sperry and Webb (1950). Two samples 

were analyzed coloriaetrically and 2 were transferred to scintillation 

\'iais for do-jible label counting. Cholesterol digitcnide was dissolved snd 

counted according to the procedure used for serum cholesterol digitonide. 

Acid steroid-i*C For approximately 1/2 of the carcass samples, ex

traction of neutral steroid-̂ Ĉ was completed with two additional 50 ml 

petroleum ether extractions. These were discarded and the aqueous lower 

phase was acidified to pH 2 with concentrated HCl and extracted with 75 ml 
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chloroforni—inôthanol (2:1) • The procedure used was for extraction of fecal 

acid steroid (Grundy et al., 1965). The rigorous saponification preceding 

extraction was omitted. Because all samples analyzed for acid steroid-̂ Ĉ 

yielded negligible quantities of label in this fraction, this extraction 

was not done for all rats. 

Other tissue analyses 

In Experiment 2, kidney and heart lipid were extracted using Stadler's 

modification of Folch et al. (1957). Cholesterol was precipitated with 

digitonin and analyzed colorimetrically and radiochemically by procedures 

similar to the procedure used for liver cholesterol analysis. 

Statistical Analysis 

A Monroe 1350 calculator was used to calculate means and standard 

errors of means for groups. Data were also computed for analysis of vari

ance for treatments and residual, or for fat, protein and meal pattern 

tested against residual. The Statistical Analysis System (SAS) of Barr 

and Goodnight (1971) was used. Differences between individual groups were 

calculated using the student T test or LSD (least significant difference) 

for P<.05. 
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RESULTS 

In the data which follow, reference to one of three experiments will 

be made. The reader may wish to refer to Table 3 for a summary of the die

tary and meal pattern variables employed in each experiment. It can be 

generally assumed that failure to report findings for a given variable re

sults because that particular variable was not included in the experiment 

under discussion. 

Data from depleted controls and stock refed animals are expressed in 

tables in this section. Results from these groups were used for interpreta

tion but will generally not be elaborated on here. 

A glossary of commonly used abbreviations is printed prior to the 

introduction, though an attempt has been made to define each abbreviation 

used as it occurs in the text. 

The parameters considered in the results fall into several major cat

egories: 1) tissue weights; 2) tissue cholesterol concentrations; 3) re

covery of ̂ *C-labeled neutral and acid steroid, following intraperitoneal 

injection of A-̂ Ĉ-cholesterol as a measure of acute turnover of cholester

ol from the rapidly equilibrating pool; 4) recovery of 'H-label in total 

lipid and digitonin precipitable sterol (DPS), after injection of Ĥ-ace-

tate, as a relative measure of cholesterol and fatty acid biosynthesis. 

The results from body weights, food consumption and food efficiency 

confirm the findings of Reeves (1971) with similar diets and meal patterns. 

They are summarized briefly in this section. Tables and figures pertain

ing to these parameters are included in the Appendix (Tables 34 to 39, 

Figures 10 to 13). 
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Body Weights 

Within each study, pre-experlmental and depleted body weights were 

statistically similar by design. Mean number of days required to deplete 

rats were 32, 54 and 32 for Experiments 1, 2 and 3, respectively (Tables 

34, 35 and 36). Individual treatment means were statistically similar for 

this variable within each experiment. In Experiment 2, length of depletion 

time was 69% greater than that in Experiments 1 and 3. This discrepancy 

between experiments can be attributed to higher initial weights and a modi

fied depletion procedure for Experiment 2 compared with Experiments 1 and 

3. 

All variables - fat concentration or source, protein concentration 

and feeding frequency - significantly influenced weight gained during re-

feeding. 

Food Consumption and Food Efficiency 

Food C-op aynaption 

Concentrations and source of dietary fat- as veil as feeding frequency, 

influenced caloric consumption during the 10 day period of realimentation 

(Tables 37 and 38, Figures 10 and 12). Differences in dietary protein con

centration (P or 4P)s howevers did not affect food consumption in the same 

refeeding period (Experiments 1 and 3). 
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Food efficiency 

In every case where protein was Increased (P versus 4P) food efficiency 

increased (P<.001, Table 38). In Experiment 1 groups SO utilized food more 

efficiently than groups OF, but this finding was not confirmed in Experi

ment 2. When BT was substituted for SO in Experiments 2 and 3, food effi

ciencies were similar during the entire refeeding period, though BT groups 

utilized food more efficiently than SO groups when the first 3 days of re-

feeding were disregarded (P<.02, Experiment 2; P<.05; Experiment 3, Table 

39). Ad libitum fed groups had slightly higher food efficiencies than did 

Mr groups during the 10 day refeeding period, though this difference was 

significant only in Experiment 3 (P<.02, Table 38). The influence of meal 

pattern on food efficiency was reversed if the first 3 days, during which 

AL groups gorged their rations, were disregarded. Then meal feeding in

creased food efficiency. This Increase was statistically supported in 

Experiment 2 (P<.001) but not in Experiment 3 (Table 39, Figures 11 and 13). 

Serum 

Serum cholesterol concentration 

Dietary fat Diets containing SO tended to decrease serum choles

terol concentrations compared to low-fat diets (Experiment 1). This de

crease was significant only for the comparison bstt-Jeen groups 20S0-4P-AL 

and 0F-4P-AL. Serum cholesterol concentrations were 48 and 59 mg/dl with 

these treatments, respectively (Table 5). 

Concentration and source of dietary fat, however, did not influence 

serum cholesterol concentrations in Experiments 2 and 3 (Tables 6 and 7). 
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Table 5. Serum and hepatic cholesterol concentrations (Experiment 1) 

Treatment 

Serum cholesterol̂  Hepatic cholesterol̂  

Treatment 

Free(mg/dl) Total(mg/dl) Ester(mg/g) Total(mg/g) 

Depleted control 13±2̂  39±2 .35±.12 2.44±.37 

OF-P-AL 

OF—P—MF 

0F-4P-AL 

0F-4P-MF 

24±3 

25+2 

20±1 

25±1 

55±2 

68+5 

59+2 

61+5 

1.59+.40 

.75+.11 

.39+.11 

.26+.06 

3.19+.60 

2.40+.27 

2.30+.24 

2.02±.16 

2080=?"" AL 

20S0-P-MF 

20S0-4P-AL 

20S0-4P-MF 

16±1 

21+1 

13+1 

19+1 

55+3 

62±4 

48+2 

59+3 

1.441.29 

.70+.18 

1.04±.29 

.80±.24 

3.16±.90 

2.45+.10 

2.82+.38 

2.67±.71 

*Serum data are from 5 pooled samples, 2 rats In each pool. 

L̂iver data are from 5 individual animals out of 10 in each 
treatment. 

M̂eaniSEri. 
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Table 6. Serum and hepatic cholesterol concentrations (Experiment 2) 

Treatment 

Serum cholesterol Hepatic cholesterol 

Treatment 

Free(mg/dl) Total(mg/dl) Ester(mg/g) Total(mg/g) 

Depleted control 14±2® 51+6 .19+.10 1.74+.10 

OF-P-AL 

OF—P—MF 

12+1 

18 ±2 

46+3 

58+5 

1.00+.13 

.28±.04 

2.70+.13 

1.76+.05 

20S0-P-AL 

20S0-P-MF 

13+2 

17+1 

45+3 

61+3 

1.04+.15 

.51+.11 

2.87±.14 

2.20±.ll 

20BT-P-AL 

20BT-P-MF 

13+2 

19±1 

42±3 

60+2 

.83±.12 

.58±.07 

2.48+.10 

2.17+.05 

Stock-AL 14+2 62+4 .06±.02 1.76+.05 

OF 

2G5G 

20BT 

15 

15 

16 

52 

52 

52 

0.61 

0.78 

0,71 

2.19 

2 = 55 

2.33 

AL 

MF 

13 

18 

44 

60 

0.96 

0.44 

2..70 

2.01 

Analysis of Variance 

Fat 

Meal pattern 

NS 

P<.001 

NS 

P<.001 

NS 

P<.001 

F<.001 

P<.001 

êan±SEM. 



www.manaraa.com

62 

Table 7. Serum and hepatic cholesterol concentrations (Experiment 3) 

Serum cholesterol Hepatic cholesterol 

Treatment 

Free(mg/dl) Total(mg/dl) Ester(mg/g) Total(mg/g) 

20S0-P-AL 13+2* 55±4 0.88±.07 2.49±.08 

20S0-P-MF 15+2 54±4 0.30+.14 1.92±.14 

20S0-4P-AL 13±1 43±2 G.41±.08 1.95+.08 

20S0-4P-MF 15+2 46+5 0.29+.05 1.88±.08 

20BT-P-AL 15±2 44+3 0.78±.15 2.19+.21 

20BT-P-MF 15±2 55+5 0.60±.19 2.05+.18 

20BT-4P-AL 12±1 45±3 0.19+.05 1.811.07 

20BT-4P-MF 16±2 58+4 0.10±.01 1.68+.06 

2050 14 48 0.46 2.04 

20BT 14 52 0.38 1.91 

AL 13 48 0.53 2.08 

Mi'" t e 53 0.31 1.87 

p 14 53 0.64 2.16 

4P 14 48 0,25 1.83 

Analysis of Variance 

Fat NS NS NS NS 

Meal pattern NS P<.07 P<.01 P<.01 

Protein NS P<.04 P<.00i P<.001 

M̂eaniSEM. 
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Overall mean serum cholesterol concentrations for OF, 20S0 and 20BT groups 

in Experiment 2 were 51.8, 52.4 and 51.5 mg/dl, respectively. Serum cho

lesterol concentrations for 20S0 and 20BT groups in Experiment 3 were 48.6 

and 51.6 mg/dl. None of these differences were significant. 

In the third experiment, fat source (SO or BT) Influenced the response 

of serum cholesterol concentrations to other variables. Serum cholesterol 

concentrations decreased with 4P compared to P when the source of dietary 

fat was SO (P<.01), but not when BT was the source of dietary fat. In the 

presence of SO, meal pattern did not Influence serum cholesterol concentra

tions. In contrast, this parssietsr was increased with meal feeding in ST 

groups (P<.01). 

Meal pattern Serum cholesterol concentrations were higher in MF 

rats compared to AL controls (Experiment 1, Table 5). For example, serum 

cholesterol concentrations were higher in groups OF-P-MF and 20S0-P-MF than 

in groups fed the corresponding diets ad libitum (P<.01). A similar trend 

toward an increase in serum cholesterol concentration with meal feeding 

was apparent with the other two diets, but differences failed to reach sta

tistical significance. 

In the second experiment, all meal pattern comparisons were statisti

cally different (P̂ .Cl/. Overall mean serum cholesterol concentrations 

M ft t* O Maw «3 C A 4SI M / Ul 1 £ A ## A V j TI* 0̂  m » im f  ̂ 1 \ T  ̂ .... -T-T • A. cat&AU t vt ruu oiiu i'lr <̂ %\J\JJLJ • i.u xuui.vxuuctj. CUm— 

parlsons, meal feeding also resulted in higher serum cholesterol concentra

tions with BT, but not with SO (Experiment 3, Table 7). 
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Dietary protein Protein decreased serum cholesterol concentrations 

In Experiment 3 (P<,05, Table 7). In Experiment 1 the trend was similar 

but differences were not significant statistically (Table 5). The signifi

cant decrease In concentration seen with protein In Experiment 3 was some

what misleading. Protein decreased serum cholesterol concentrations In 

groups fed SO but not In groups fed BT. In every comparison with SO, pro

tein decreased concentrations of serum cholesterol. A consistent decrease 

In this parameter was not shown with OF and BT treatments when protein was 

Increased (Experiments 1 and 3). 

Serum cholesterol radioactivity 

Serum ̂ H-cholesterol Serum levels of ®H, based on Ĥ-acetate In

corporation Into DPS, were too small to give confidence to the data ob

tained after correction for In samples. 

Serum '̂'C-cholesterol Depleted controls had more ̂ Ĉ-dpm/ml serum 

than did any refed group (Experiment 2, Tables 8 and 9). Serum cholesterol 

S.A. (̂ ''C-dpm/mg) was also highest in depleted controls, whereas rats refed 

the stock ration had the lowest ̂  "̂ C/ml serum and the lowest serum choles

terol S.Â. 

Concentration and source of dietary fat influenced  ̂"̂ C-dpm DPS/ml 

serum in Experiment 2 (P<.05). Groups fed diets OF, 20S0 and 20BT had 

values of 9200, 6900 and 8000, respectively (Table 9)̂  Serum cholesterol 

S.A. was also Influenced by fat source (P<.01; Table 9). The SO regimen 

compared with that containing OF and BT reduced cholesterol S.A. 

In the third study, fat source (SO or BT) did not influence either 

serum ^̂ C-dpm DPS/ml or ̂ Ĉ-cholesterol S.A. 
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Table 8. Serum DPS®, ^"c-DPS/ml and S.A. (^"c-dpm x lOf/mg DPS)^ 

Serum DPS (experiment 2) Serum DPS (experiment 3) 

Treatment 

mg/ml 
 ̂"̂ C-dpm 
X lOVml 

S.A. mg/ml 
^̂ C-dpm 
X lOVml 

S.A. 

Depleted 
control .51±.06*̂  10.3±1.6 19.8±2 .3 - - -

OF-P-AL .46±.03 8.9± .8 19.3±1 .8 - - -

OF—P—MF .58+.05 8.8+1.3 16.5±1 .9 - - -

20S0-P-AL .45±.03 5.6+ .8 13.4±1 .3 .55+.04 7.0+ .4 12.9± .8 

2OS0-P-MF .61+.03 8.6+ .9 13.0± .9 .54±.04 5.2+ .6 9.3±1 .5 

20S0-4P-AL - - - .43±.02 5.3+ .7 11.7+1 .4 

20S0-4P-MF - - - .46±.05 4.5+ .4 10.5+1 .0 

20BT-P-AL .42±.03 7.6+1.0 17.9±1 .4 .44+.03 6.6±1.1 13.6+2 .2 

20BT-P-MF .60+.02 8.3+ .6 13.8± .9 .55+.05 6.6± .7 11.9+ .8 

20BT-4P-AL — - » .45±.03 5.0+ .4 11.1+ .6 

203T-4P-MF — — .58+.04 6,0± .6 10.5± .9 

Stock-ÂL .62%.04 5.4± .5 8.9+ .8 - — -

D̂igitonin precipitable sterol, cholesterol. 

V̂ariable means and analysis of variance in Table 9. 

M̂ean±SEM. 
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Table 9. Serum DPS*, l̂ C-DPS/ml and S.A. (̂ ''C-dpm x lOVmg DPS) : 
Variable means and analysis of variance 

Serum DPS (experiment 2) Serum DPS (experiment 3) 

Treatment Treatment 

mg/ml 
î C-dpm 
X lOVml 

S.A. mg/ml 
 ̂"̂ C-dpm 
X lOVml 

S.A. 

OF .52 9.2 18.G — - -

20S0 .52 6.9 13.2 .48 5.4 11.1 

20BT .52 8.0 15.8 .52 5.9 11.6 

AL .44 7.3 16.8 .48 5.8 12.2 

MF .60 8.5 14.3 .53 5.5 10.6 

P - — - .53 6.3 12.0 

4P - - - .48 5.2 10.9 

Fat NS P<.05 P<.01 NS NS NS 

Meal 
pattern P<.001 NS P<.02 P<.07 NS P<.05 

Protein — -
•= ?<. G5 fl 01 NS 

D̂igitonin preclpltable sterol. 
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Decreased feeding frequency tended to elevate the amount of label re

covered in the serum. This was to be expected since cholesterol concentra

tions had increased with meal feeding. Serum cholesterol S.A., however, 

was decreased in MF compared with AL groups in Experiments 2 (P<.02) and 

3 (P<.05, Table 9). 

Increased protein intake decreased the recovery of  ̂"̂ C-dpm DPS/ml of 

serum (P<.02, Experiment 3). Cholesterol S.A., however, did not decrease 

similarly (Table 9). 

Serum cholesterol ester fatty acid pattern 

Low-fat compared with SO diets increased the percentage contribution 

of the major fatty acids formed from dietary carbohydrate to cholesterol 

ester fatty acids (CEFA): palmitate (C16), palmitolate (C16:l) and oleate 

(CIS :I) (Table 10). This same comparison resulted in a reciprocal decrease 

in contribution from the w6 family of fatty acids: linoleate (C18:2) and 

arachidonate (C20:4). Changes in CEFA pattern were not seen with increased 

protein or decreased feeding frequency (Experiment 1, Table 10). 

Liver 

Hepatic weight and percent lipid 

Controls : depleted and stock refcd Mean hepatic weights for de

pleted controls were 6.3 and 7.6 g with 3.7 and 3.2% hepatic lipid (Experi

ments 1 and 2, Table 11). Rate of hepatic regeneration was highest with the 

stock diet, but a significant restoration of liver weight occurred with all 

refeeding treatments. 
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Table 10. Serum and hepatic cholesterol fatty acid patterns. Percent of 
total fatty acids (Experiment 1) 

Treatment Tissue <14 1̂4:1 Cl6 1̂6:1 

Depleted control Serum 1+.2* - 13+1.2 2+ .7 

Liver - - - -

OF-P-AL Serum l+.l — 16± .9 23±1.4 

Liver 1±.2 1±.4 25±1.2 28±1.4 

OF-P-MF Serum 1±.2 - 13±1.1 27+2.8 

Liver 2±.6 1±.7 26+1.3 25+2.1 

20S0-P-AL Serum - mmt 11+ .4 1+ .3 

Liver 1±.4 1+.4 14± .8 -

20S0-P-MF Serum - - 10± .9 1+ .3 

Liver 1±.2 1+.5 16+1.2 -

êaniSEM. 
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1̂8 1̂8:1 1̂8:2 1̂8:3 2̂0:4 

2± .5 12±1.5 22+1.8 - 48±2.6 

2±1.4 19+ .8 12+ .5 - 27+ .8 

3± .5 34±1.0 3+ .8 - 4+ .7 

1+ .4 19+1.1 13+1.1 - 26+3.5 

3± .3 30±1.9 6±1.4 - 7+1.0 

2± .4 5± .6 26+2.2 - 55±2.7 

2± .3 15±1.3 50+1.8 - 1611.7 

2+ .4 7± .6 29±2.3 - 51+2.0 

3+ .4 15+1.0 48±1.9 - 16+1.4 
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Table 11. Hepatic weights and % lipld̂  

Liver  ̂ Liver Liver , 
(experiment 1) (experiment 2)*̂  (experiment 3) 

Treatment 

Weight(g) Lipid(%) Weight(g) Lipid(%) Weight(g) Lipid(%) 

Depleted 
control 6.3±.l® 3.7±.5 7.6±.l 3.2± .2 - -

OF-P-AL 8.9±.4 6.3±.7 10.2+.1 6.4+ .9 - -

OF-P-MF 9.1±.4 4.4±.2 10.2±.l 3.7+ .2 - -

0F-4P-AL 9.9±.3 4.0±.2 - - - -

0F-4P-MF 9.9±.4 3.9±.2 - - - -

20S0-P-AL 9.7±.4 6.6±.2 9.6±.2 5.7± .4 9.9±.3 6.2±.6 

20S0-P-MF 9.2±.2 5.2±.3 9.6±.2 4.2+ .3 9.7±.3 3.8±.4 

20S0-4P-AL 9.9+.4 4.8±.2 - - 11.1±.3 4.1+.5 

20SG-4P-MF 9.8±.4 4.4±.2 - - 11.7±.4 3.9±.5 

20BT-P-AL - - 10.5±.3 7.7±1.1 11.6±.7 7.3+.8 

20BT-P-MF - - 10.3±.2 5.6± .9 10.9+.3 6.8+.7 

20BT-4F-AL - -
0 AO- C ±.£, 8 e J /. 14. C 

20BT-4P-MF - - - - 11.8+.4 3.6±.4 

Stock̂ AL - - i4.0±.4 3,o± ,2 

"Variable means and analysis of variance in Table 12. 

k 
Fasted from 5 p.m. to 9 a.m., sacrificed 9 a.m. 

'̂ Fasted from 5 p.m. to 9 a.m., fed 1 hour, injected with 50uC 
K̂-acetate, sacrificed 2.5 hours later. 

ÂL allowed food from 5 p.m. to 9 a.m. and MF fasted as in Experiment 
2, fed 1 hour. Injected with 50 yC ̂ H-acetate, sacrificed 2.5 hours later. 

M̂eaniSEM. 
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Dietary fat Groups OF and 20S0 had similar hepatic weights and 

percentages of hepatic lipid in both Experiments 1 and 2. BT compared 

with low-fat feeding (Experiment 2) and with SO feeding (Experiments 2 and 

3) increased liver weights and lipid concentrations (Table 12), 

Meal pattern Feeding frequency did not Influence hepatic weight in 

any dietary comparison. In every Instance, however, MF groups had decreased 

hepatic lipid concentrations (Table 11). Mean liver lipid concentrations 

for AL versus MF groups were 5.5 versus 4.2% (P<.01, Experiment 1), 6.6 

versus 4.4% (P<.001, Experiment 2), and 5.3 versus 4.3% (P<.01, Experiment 

3, Table 12), 

Dietary protein With increased dietary protein, hepatic .weights 

increased in Experiment 3 but not in Experiment 1. In both experiments, 

however, liver lipid concentration decreased with Increased dietary protein 

(P<.01, Experiment 1; P<.00i, Experiment 3). 

Hepatic cholesterol concentration 

Dietary tat Level and kind of distairy laL influenced hepatic cho

lesterol concentration in Experiment 2 (P<.01, Table 6). Groups OF, 2030 

and 20BT had cholesterol concentrations of 2.2, 2.6 and 2.3 mg/g liver, 

respectively. Fat source (SO or BT) did not influence hepatic cholesterol 

concentration in Experiment 3, though SO groups tended to have increased 

concentrations. These results were similar to those froE the second experi

ment. 
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Table 12. Hepatic weights and % lipid: Variable means and analysis of 
variance 

Liver Liver Liver 
(experiment 1) (experiment 2) (experiment 3) 

Treatment 

Weight(g) Lipid(%) Weight(g) Lipid(%) Weight (g) Lipid(%) 

OF 9.5 4.5 10.1 5.0 — — 

20S0 9.8 5.2 9.6 5.0 10.7 4.4 

20BT - - 10.4 6.6 11.6 5.2 

AL 9.8 5.5 10.0 6.6 11.2 5.3 

MF 9.5 4.2 10.0 4.4 11.1 4.3 

P 9.2 5.6 - — 10.5 5.9 

4P 9.9 4.3 - - 11.6 4.0 

Analysis of Variance 

Fat NS P<.01 P<.02 P<.05 P<.01 P<.01 

Msâl 
pattern NS P<.01 NS P<.001 NS P<.01 

Protein P<.01 P<.01 - - P<.001 P<.001 
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Meal pattern Hepatic cholesterol concentrations decreased with 

meal feeding in all three experiments (Tables 5, 6 and 7). Groups AL com

pared with MF had concentrations of 2.70 versus 2.01 (P<.001, Experiment 

2) and 2.08 versus 1.87 (P<.01, Experiment 3) mg/g liver. 

The decrease in hepatic cholesterol occurred primarily in the esteri-

fied fraction. Hepatic cholesterol ester decreased with meal feeding from 

.94 to .44 mg/g liver (P<.001, Experiment 2) and from .53 to .31 mg/g liver 

(P<.01, Experiment 3). 

Protein level Increased protein intake decreased hepatic choles

terol concentration in both Experiments 1 and 3, The decrease in hepatic 

total cholesterol (P<.001) was a reflection of the decrease in hepatic cho

lesterol ester (P<.001, Experiment 3, Table 7) in group 4P compared with P. 

Hepatic cholesterol radioactivity 

Hepatic ̂ H-cholesterol Animals refed with stock diet Incorporated 

approximately twice as much Ĥ-acetate into hepatic DPS as did depleted 

controls. Cholesterol biosynthesis in refed groups other than the stock 

group did not differ significantly from that of depleted controls (Table 

13). 

Low-fat groups incorporated less Ĥ-acetate into DPS than did fat-fed 

groups (P<.05. Experiment 2). Source of dietary fat, however, did not in

fluence cholesterol biosynthesis in either Experiment 2 or 3-

Groups AL and MF incorporated similar amounts of Ĥ-acetate into DPS 

(Experiments 2 and 3. Table 13). Likewise, dietary protein concentration 

did not influence synthesis of cholesterol in the third study. 
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Table 13. Hepatic *H-DPS* and *H-DPS as % of total liver lipid: 
Variable means and analysis of variance 

Hepatic DPS (experiment 2) Hepatic DPS (experiment 3) 

Treatment 

Ĥ-dpm X 10̂  % TLL-̂ H Ĥ-dpm x 10̂  % TLL-̂ H 

OF 7.2 2.6 - -

20S0 9.6 9.5 30.7 11.2 

20BT 10.4 6.6 28.3 9.8 

AL 8.6 6.1 29.6 13.0 

MF 9.4 5.3 29.4 8.0 

P - - 29.9 9.8 

4P - - 29.2 11.2 

Depleted control 5.6 8.8 - -

Stock-AL 16.4 13.8 - -

Analysis of Variance 

sat NS P<.001 NS NS 

Meal pattern NS NS NS P<.01 

Protein - - NS NS 

"Digitonin precipitable sterol. 

T̂otal liver lipid. 
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Hepatic  ̂̂ C-cholesterol Recovery of hepatic  ̂̂ C-dpm in DPS and 

cholesterol S.A. in low-fat groups exceded values obtained with high-fat 

diets (P<.001, Table 14). Values for cholesterol S.A. (̂ Ĉ-dpm/mg) were 

17,200 for OF and 11,700 and 14,000 for SO and BT. In Experiment 2, he

patic **C-dpm/mg in DPS was higher with BT than with SO, though this re

lationship was not seen in Experiment 3 (Table 15). 

Decreased feeding frequency lowered hepatic  ̂"̂ C-dpm in DPS in both 

radiochemical studies (P<.001, Experiment 2; P<.05, Experiment 3, Figure 

3). Cholesterol S.A. was also decreased by meal feeding in Experiment 2 

(r<.002) and tended to be decreased in Experiment 3 (Table 15), 

Increased dietary protein tended to decrease hepatic "̂̂ C-dpm in DPS, 

though cholesterol S.A. was not changed by protein (Table 13). 

Hepatic cholesterol ester fatty acid pattern 

The combined percentage of C16, C16:1 and C18:l in CEFA was 84% in OF 

groups as compared to 30% in SO gropps. The sums of CIS:2 and C20:4 with 

low-fat and SO diets were 10 and 65% of hepatic CEFA, respectively. MF 

compared with AL treatments decreased hepatic cholesteryl oleate (P<.05) 

and tended to decrease cholesteryl palmitate in lov-fat groups-. Concomi

tant increases in CIS:2 and C20;4 occurred in MF groups, although these 

Increases did not reach the level of statistical significance. 

Hepatic fatty acid biosynthesis 

Dietary fat Incorporation of Ĥ-acetate into total lipid (Folch et 

al., 1957) was assumed to represent primarily incorporation or label into 

fatty acids. Low-fat diets caused more acetate incorporation into hepatic 
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Table 14. Hepatic DPS*, ̂ "c-DPS and S.A. DPS (̂ "̂ C-dpm x lOVmg)̂  

Hepatic DPS (experiment 2) Hepatic DPS (experiment 3) 

Treatment 

mg 
 ̂"̂ C-dpm 
X 10% 

S.A. mg 
 ̂"̂ C-dpm 
X 10̂  

S.A. 

Depleted 
control 13 .6± .8̂  354130 23.711. 6 - - -

OF-P-AL 27 .1±1 .3 463121 18.81 . 6 — - -

OF-P-MF 17 .8± .5 286122 15.811. 3 - - -

20S0-P-AL 27 .7±1 .3 387149 13.011. 3 24 .61 .3 288131 11.5±1 .1 

20S0-P-MF 21 .Oil oO 216117 10.4+ . 6 18 .7+1 .4 200121 8.611 .8 

20S0-4P-AL - - - 21 .61 .9 284126 10.81 .7 

20S0-4P-MF - - - 22 .0+ .9 223123 10.211 .2 

20BT-P-AL 25 .911 .0 391120 15.511. 4 25 .412 .4 305136 11.911 .1 

20BT-P-MF 22 .3± .5 288125 12.61 . 9 22 .312 .0 268+49 11.71 .8 

20BT-4P-AL - - - 21 .81 .8 222119 10.811 .0 

20BT-4P-MF - - - 19 .8+ .7 218115 10.41 .6 

Stock-AL 25 .3± .7 228+22 9.511. 1 - -

B̂igitonin precipitable sterol, cholesterol. 

V̂ariable means and analysis of variance for variables are in 

f L 
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Table 15. Hepatic DPS*, ̂ "c-DPS and S.A. (̂ "c-dpm x lOVmg DPS): 
Variable means and analysis of variance 

Hepatic DPS (experiment 2) Hepatic DPS (experiment 3) 

Treatment 

mg ^̂ C-dpm X 10̂  S.A. mg "̂̂ C-dpm X 10̂  S.A. 

OF 21.9 363 17.2 — — -

20S0 25.5 302 11.7 20.4 248 10.4 

20BT 23.2 337 14.0 19.1 246 11.1 

AL 27.0 414 15.8 20.8 270 11.2 

MF 20.1 266 13.1 18.7 226 10.3 

P — - - 21.6 263 11.0 

4P - - - 18.3 235 10.6 

Analysis of Variance 

Fat NS NS P<.001 NS NS NS 

pattern P<=001 P<.001 P<.01 P<.01 P<.05 NS 

Protein - - - P<.001 NS n S 
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Figure 3. Hepatic lipid 6 days following intra
peritoneal injection of 5 yC A-̂ Ĉ-cholesterol: 
total hepatic lipid and DPS (digitonin precip-
itiible sterol). Experiment 2 

I 
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lipids than did those on SO in. Experiment 2 (P<.01, Table 16), but the in

crease In lipogenesis seen in Experiment 3 was too small to be significant. 

Relative incorporation of Ĥ-acetate into total liver lipid and into DPS 

is shown in Figure 4 for groups OF, 20S0 and 20BT. 

Low fat versus fat containing diets were associated with elevated 

hepatic lipid S.A. (P<,001, Experiment 2, Table 17). Activities were 615 

versus 330 ̂ H-dpm x lo'/g hepatic lipid. Hepatic lipid S.A., however, was 

not influenced by source (SO or BT) of dietary fat (Experiments 2 and 3). 

Meal pattern Tritium recovered in hepatic lipid with MF groups 

compared to AL groups was increased In both radiochemical studies, but the 

differences were not at the level of significance (P<.20, Experiment 2; 

P<.10, Experiment 3, Table 17). Hepatic lipid S.A., however, was elevated 

with MF versus AL treatments (P<.001, Experiment 2; P<.01, Experiment 3). 

Dietary protein Dietary protein concentrations did not affect 

lipogenesis (Experiment 3). 

Hepatic  ̂'*C-con.1ugated bile acid 

In these studies bile acid concentrations were not measured chemically. 

Interpretation of *^C=blle acid is based on the assumptions 1) that pod 

size of bile acid is constant for a given weight (Shefer et al., 1969) and 

2) that bile acids produced from cholesterol have the same S.A. as hepatic 

cholesterol. For this reason hepatic cholesterol S-A. is used as the basis 

of comparison in Table 18. 

The ratios of acid steroid-̂ Ĉ to hepatic cholesterol S.A. ranged 

from approximately 0.5 in depleted controls to more than 2 in the group 

fed stock ration (Experiment 2). In the same experiment, the ratios in 
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Table 16. Hepatic lipid, *H-acetate incorporation and S.A. 
('H-dpm X lO'/g lipid)® 

Hepatic lipid (experiment 2)̂  Hepatic lipid (experiment 3)*̂  

Treatment 

g 
*H-dpm 

X 10' 
S.A. g 

'n-dpm 
X 10' 

S.A. 

Depleted 
control .25±.02̂  110+ 8 474±42 - - -

OF-P-AL .56±.05 304±41 480+62 — — -

OF-P-MF .38±.03 271±23 729±55 - - -

20S0-P-AL .571.05 99± 9 203+45 .61+.04 264± 79 4161102 

20S0-P-MF .40±.03 140±11 357+39 .37+.04 4691115 14091403 

20S0-4P-AL - — - .46±.03 244± 41 574+128 

20S0-4P-MF - - - .46+.02 364± 90 810+210 

20BT-P-AL .82±.14 181±20 250±48 .87±.16 446+ 99 5941156 

20BT-P-MF .581.10 198±23 410±56 .70+.08 250± 38 360+ 35 

20BT-4P-AL - - - .52±.08 268± 63 5191126 

2û3î-4F-fir - - - .43±.G3 47S±ilO 1108+243 

Stock-AL .50±.02 136± 6 274±16 - - -

V̂ariable means for analysis of variance are in Table 17. 

Înjected with 50 mg Ka pentobarbitol 2 hours after 50pC ̂ K-acatate 
injection, sacrificed at 2,5 hours. 

"Injected with 25 mg Na pentobarbitol per 100 g body weight 2 hours 
and 20 min after 50pC 'H-acetate Injection, sacrificed at 2.5 hours. 

'̂ MeaniSEM. 
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Figure 4. Hepatic lipid - 2.5 hours following 
inj ection with SO UC ̂ H-aeetiite. Total 
hepatic lipid and DPS (digitonin precip-
itable sterol) . EScperiment 2 
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Table 17. Hepatic lipid, ̂ H-acetate incorporation and S.A. (̂ H-dpm x 
10 /g lipid): Variable means for analysis of variance 

Hepatic lipid (experiment 2) Hepatic lipid (experiment 3) 

Treatment 

g Ĥ-dpm X lO' S.A. g Ĥ-dpm X 10̂  S.A. 

OF .46 286 615 ' — — — 

20S0 .49 120 280 .47 331 787 

20BT .70 190 330 .61 362 669 

AL . 64 199 318 .60 298 529 

MF .45 210 523 .48 394 927 

P - — - .64 357 695 

4P - - - .47 338 753 

Analysis of Variance 

Fat P<.01 P<.001 P<.001 P<.01 NS NS 

Meal 
pattern P<=01 NS P<.001 P<.01 NS P<.01 

Protein - - - P<.001 NS NS 
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refed groups other than stock were approximately 1. In Experiment 3, these 

ratios were decreased and were similar for all groups regardless of experi

mental variables (Table 18), 

Small Intestine 

Intestinal̂  cholesterol concentration 

Dietary fat More DPS was recovered in intestine of SO than BT 

groups (P<.02, Experiment 3, Table 19). SO tended to increase cholesterol 

concentrations in Experiment 2, but the differences between SO, OF and BT 

were statistically not significant= 

Meal pattern Intestinal cholesterol concentrations were similar 

for ÂL and MF groups (Experiments 2 and 3). 

Dietary protein Increased dietary protein Increased intestinal 

cholesterol concentration (P<.05, Experiment 3). This increase was asso

ciated with BT but not with SO. 

Intestinal cholesterol radioactivity 

Intestinal Ĥ-cholesterol Data for *H-acetate incorporation into 

DPS are only available for Experiment 3-. Data from incorporation of label 

indicated that more newly synthesized cholesterol was present in the in

testine of SO than of BT groups (P<.01, Experiment 3). The meal patterns 

and protein concentrations used resulted in almllar values for in 

intestinal DPS. 

'Small intestine and contents. 
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Table 18. S.A. hepatic DPS® (̂ Ĉ-dpm x lÔ /mg) and C-acid steroid 

Experiment 2 Experiment 3 

Treatment 
Hepatic DPS 

S.A. 
Acid steroid 
 ̂"̂ C-dpm X 10̂  

Hepatic DPS 
S.A. 

Acid steroid 
"̂c-dpm X 103 

Depl ted 
control 23.7±1.6̂  13.6±1.6 - -

OF-P-AL 18.8± .6 17.6+2.6 — -

OF-P-MF 15.8+1.3 17.9+2.2 - -

20S0"P-'AL 13.0±1.3 10,3±1.0 11.3+1.1 7.7il.3 

2OS0-P-MF 10.4+ .6 10.2+ .5 8.6+1.8 5.3+1.0 

20S0-4P-AL - - 10.8± .7 6.1±1.5 

20S0-4P-MF - - 10.2±1.2 5.4± .7 

20BT-P-AL 15.5±1.4 16.6±1.3 il.9±l.l 7.8+3.0 

20BT-P-MF 12.6± .9 13.6± .8 11.7+1.8 7.3±2.4 

20BT-AP-AL - - 10.8±1.0 6.1± .4 

t.T% irO 
- - 10.6+ .6 5.6+1.8 

Stock-AL 9.5±1.1 21.9±2.8 - -

Analysis of Variance 

Fat P<.001 P<.001 NS NS 

Meal 
pattern P<.005 NS NS NS 

Protein - - NS NS 

*Digitonin precipitable sterol. 

M̂eaniSEM. 
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Table 19. Small intestine weight*, DPŜ , ̂ "c-DPS, ̂ H-DPS and S.A. DPS 
(̂ *C-dpm X 10̂  dpm/mg). Experiments 2 and 3 

Experiment 2 

Small 
Treatment intestine 

weight — 

g mg 

Depleted 
control 5.6±.l® 11.0± .4 168±18 — 15.3+.3 

OF-P-AL 7.9±.3 15.4+ .6 206+26 _ 4.9+.6 
OF—P—MF 7.2±.4 16.0+ .9 166+17 - 4.0+.3 

20S0-P-AL 8.2±.2 16.7± .4 180±19 m. 4.3±.4 
20SÛ-P-MF S.ii.3 lô.7i .9 164x19 - 3.9±.4 
20S0-4P-AL — - - - -

20S0-4P-MF - - - - -

20BT-P-AL 9.1±.3 15.9+ .6 188±18 _ 4.5±.4 
20BT-P-MF 8.8±.3 15.8+ .8 156±13 - 3.7±.3 
20BT-4P-AL - - — - -

20BT-4P-MF - - - - -

Stock-AL 15.2±.6 27.8+1.4 184+30 — 6.6±.9 

Analysis of Variance 

Fst P<,001 NS NS NS 
Meal pattern NS NS P<.05 - P<.05 
Protein — — — — -

*Small intestine: tissue + contents. 

"uigitonin precipitabie sterol. 

"̂ Experissnt 2, sd libitixa fed rats fasted overnight prior to day of 
sacrifice. 

Êxperiment 3, ad libitum fed rats allowed access to food overnight 
before day of sacrifice. 

Small intestine DPS 

 ̂"̂ C-dpm Ĥ-dpm . 
X 10"= , 10' S.A. 

M̂eaniSEM. 
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Bcperlment 3 

, 3**1} Small intestine DPS 
intestine 
weight 

g mg S.A. 
X 10*" X 10' 

9.2±.7 19.9±1.2 136±15 39± 6 6.9± .7 
10.3+.5 20=0±1.0 231153 46± 5 14.7±2.S 
i0.0±.5 20.4+0.5 191±54 43± 6 9.4+2.7 
10.0±.4 19.8±0.6 261±57 39± 7 13.2+2.8 

10.6±.3 17.5+1.0 231+61 73±14 14.5+4.5 
10.0±.3 17.1±0.8 241+51 60+12 14.4+3.2 
10.6+.5 19.8±0.8 266±45 46± 7 13.8±2.7 
11.4±.6 IS.5+0.8 230+39 53± 9 12.5+2.1 

Analysis of Variance 

?<.02 P<.02 NS P<=01 NS 
NS NS NS NS NS 
NS P<.05 NS NS NS 
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Intestinal ̂  '̂ C-cholesterol Neither Intestinal ̂ "̂ C-dpm In DPS nor 

"̂̂ C-dpm/mg DPS were affected by level or source of dietary fat (Experiments 

2 and 3). Meal feeding compared with ad libitum feeding decreased small 

Intestinal ̂  "̂ C-dpm In DPS In Experiment 2 (P<.05). These data were not 

confirmed in the third experiment; in fact in three out of four comparisons 

there were numerically large trends in the opposite direction. The appar

ent inconsistency probably results from the fact that AL groups were fasted 

overnight in Experiment 2, whereas in Experiment 3 they were allowed access 

to food throughout the night before sacrifice. Protein level did not in

fluence intestinal in BPS (Experiment 3, Table 19). 

Intestinal conjugated  ̂"̂ C-blle acids 

Dietary fat Groups OF had significantly more ̂  in conjugated 

bile acids in the small intestine than did SO and BT groups (P<.02, Experi

ment 2, Table 20). Depleted and stock refed controls received low levels 

of dietary fat and were comparable to OF groups in this same experiment. 

In both radiochemical studies, similar amounts of acid-'̂ C were recovered 

In SO and BT groups with intestinal analysis. 

Heal pattern Meal pattern did not Influence tue amount of "̂c-bile 

acid label recovered at the time of sacrifice (Experiments 2 and 3, Table 

20). 

Dietary protein Increased concentrations of dietary protein did 

not alter "̂̂ C-dpm recovered in conjugated acid steroids (Experiment 3, 

Table 20). 
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Table 20. Small 
and 3) 

intestinê  conjugated bile acid - *̂*0 (Experiments 2 

Experiment 2 Experiment 3 

Treatment 

Bile acid  ̂"̂ C-dpm x 10̂  Bile acid ̂ "c-dpm x 10̂  

Depleted control 274+22̂  -

OF-P-AL 278+20 — 

OF-P-MF 292±31 -

20S0-P-AL 185+23 180+40 

20S0-P-MF 207±31 133+42 

20S0-4P-AL - 123+10 

20S0-4P-MF - 127±18 

20BT-P-AL 221+27 124+16 

20BT-P-MF 217±15 104±13 

20BT-4P-AL - 147+21 

20BT-4P-MF 155±26 

Stock-AL 295±44 -

Analysis of variance 

Fat ?<.02 NS 

Meal pattern NS NS 

Protein NS 

*Small Intestine: tissue plus contents. 

M̂eaniSEM. 
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Epidldymal Fat Pad 

Weights of epidldymal fat pad and epidldymal lipid 

Dietary fat More epidldymal lipid was deposited during refeeding 

by SO compared to low-fat groups (P<.001, Experiment 1, Table 21). The 

amount of epidldymal fat was highly correlated with total body lipid in 

this experiment (r = .85, Figure 5). Experiment 2 confirmed that epidldy

mal, and therefore carcass, lipid increased more with SO and BT than with 

OF (P<.01, Table 22a), though fat source did not seem to influence deposi

tion of lipid (Experiment 2). 

Meal pattern Meal pattern did not influence lipid deposition in 

either Experiment 1 or 2, despite lower consumption of calories by MF com

pared to AL groups (P<.01, Experiment 1; P<.001, Experiment 2). 

Epidldymal fatty acid biosynthesis 

Dietary fat Epidldymal fatty acid synthesiŝ  was comparable to 

hepatic llpogenesls in that groups OF incorporated more acetate into lipid 

than did groups SO and BT (P<.001, Table 22a). Lipid-̂ H S.A. was also 

higher in low-fat than in high-fat groups (P<.001). As in liver, group 

20BT-P-AL had more Ĥ-acetate incorporation into lipid than did group 20S0-

F-AL (P<.05, Experiment 2). Lipid S.A; was similar for groups SO and BT, 

though it teiided to increase vith BT. 

^̂ H-acetate incorporated into total lipid (Folch et al., 1957) was 
not fractionated. Total lipid Ĥ-label was Interpreted as being predomi
nantly from fatty acid synthesis. 
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Table 21. Carcass and epldidytnal lipid deposition during refeedlng 
(Experiment 1) 

Treatment 
Body weight Body lipid 

Body lipid̂  
deposited 

g % g 

Depleted control 298±1̂  1.8± .2 

OF-P-AL 
OF-P-MF 
0F-4P-AL 
0F-4P-MF 

345±4 
346+2 
365+5 
369±4 

7.6+ .3 
7.8± .4 
6.7+ .6 
8.3±1.7 

21+1 
22+1 
20+2 
23+3 

20S0-P-AL 
20S0-P-MF 
20S0—4P—AL 
20S0-4P-MF 

366+5 
358+3 
395±6 
388+6 

11.5+ .3 
9.4+ .4 
10.8± .7 
11.1+ .7 

38±1 
29±2 
38+2 
39+3 

OF 
20S0 

356 
376 

7.6 
10.6 

22 
36 

AL 
MF 

366 
365 

8.9 
9.1 

28 
28 

P 
4P 

353 
378 

8.9 
9,2 

27 
30 

Analysis of Variance 

Fat 
Meal pattern 
Protein 

P<.001 
NS 

P<.OOI 

P<.001 
NS 
NS 

P<.001 
NS 
NS 

"Lipid deposited (g) total carcass lipid (including liver and 
epidldymal lipid) - 6.2 g (mean depleted carcass lipid). 

rxêâiiiSS'î* 
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Weight deposited Kcal consumed Epididymal lipid 

as lipid deposited as lipid deposited 

% % g 

45±1 27+3 0.9±.l 
46±4 34+5 1.4±.l 
29+4 27+3 1.3+.1 
32+4 32±3 1.4±.4 

56±1 42+2 2.4±.2 
48±1 35+2 1.6±.3 
40±5 4ii3 2.01.5 
43+4 44±2 2.7+.4 

38 30 1.2 
47 40 2.2 

42 33 1.6 
42 36 1.8 

49 34 1.5 
36 36 1.8 

Analysis of Variance 

P<.001 P<.001 P<.001 
KS NS NS 

P<.001 NS NS 
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Figure 5. Weight carcass fat compared with weight epididymal fat 
(Experiment 1) 
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Table 22a. Epididymal fat pad weight and lipid weight, ̂ H-acetate incorpo
ration and S.A. (®H-dpm x 10'/g). Experiment 2 

Treatment 
Epididymal fat 
pad weight 

Epididymal lipid 

Treatment 
Epididymal fat 
pad weight 

g 
g %-dpm X 10 3 S.A. 

Depleted control 1.7+.3* .92±.20 6.1+i.O 8.1+1.8 

OF-P-AL 3.4±.3 1.86+.21 52.1±8.4 31.2+6.4 

OF-P-MF 2.8±.2 l.eOi.lB 57.5±5.0 40.3±4.9 

20S0-P-AL 4.0+.3 2.30±.22 15.1+2.3 7.511.4 

20S0-P-MF 3.8±.3 2.34+.17 26.4+4.0 11.7+1.8 

20BT-P-AL 4.1+.3 2.50+.25 32.3+8.3 9.6+ .8 

20BT-P-MF 3.9±.4 2.09+.22 29.1+5.8 14.1±2.2 

Stock-AL 4.0+.3 2.14+.32 28.5+5.5 13.5+2.2 

Analysis of Variance 

Fat NS P<.01 P<.001 P<.01 

Meal pattern NS NS NS NS 

SîeaniSEM. 
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pattern Feeding frequency did not significantly Influence the 

incorporation of Ĥ-acetate into epididymal lipid, though meal feeding 

tended to elevate epididymal lipogenesis (P<.10, Table 22a). The lipid-

S.A., however, was increased in MF compared with AL groups. 

Epididymal lipid neutral-̂ **0 

Concentration and source of dietary fat did not influence the amount 

of '̂*C-cholesterol label̂  recovered in epididymal lipid, but ̂ "̂ C-dpm de

creased with meal feeding (P<.01, Experiment 2, Table 22b). 

Table 22b. Epididymal lipid neutral-̂  **€ 

Treatment  ̂̂ C-dpm X 10̂  

OF-P-AL 32.1+2.2 

OF—P—MF 22.1+5.4 

20S0̂ P—AL 26.2±2,1 

20SÛ-P-HF 22.7±2.7 

20BT-P-AL 32.4+2.0 

20BT-P-MF 21.2±2.6 

Analysis of Variance 

Fat NS 

Meal pattern P<.01 

\abel (**C) In total epididymal lipid (Folch et al., 1957) was as
sumed to be largely dlgltonin precipltable as in liver (Figure 3). 
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Kidney 

Kidney weight 

Dietary fat Neither concentration nor source of dietary fat in

fluenced kidney weight (Experiment 2, Table 23). 

Meal pattern Groups MF compared with groups AL had smaller kidneys 

(P<.001, Table 23). Kidney weights for MF groups were identical with mean 

weight for depleted controls, whereas AL groups showed increased tissue 

weight with refeeding. 

Kidney cholesterol concentration 

Dietary fat Low-fat diets depressed kidney cholesterol concentra

tion compared with diets containing fat (P<.05, Table 23), though the 

source of dietary fat did not influence kidney cholesterol concentration. 

Meal pattern Though kidney size was decreased with meal feeding 

in comparison with ad libitum feeding, kidney cholesterol concentration was 

not influenced by feeding frequency (Table 23). 

Kidney  ̂̂ C-cholesterol 

Dietary fat Concentration and source of dietary fat did not in

fluence the "̂̂ C-dpm recovered in kidney DPS, but omitting fat from the 

diet increased ^̂ C-cholesterol S.A. (P<.01). 

Meal pattern Kidney '̂ C-cholescefol was decreased in MF ccsparcd 

with AL groups (P<.02). Cholesterol S.A. was similar with both treatments 

(Table 23). 
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Table 23. Kidney weight, DPŜ , 
Experiment 2 

î C-DPS and S.A. DPS (î C-dpm X lOVtng). 

Treatment 
Kidney 
weight 

Kidney DPS 

Treatment 
Kidney 
weight 

g mg ^̂ C-dpm X 10̂  S.A. 

Depleted control 2.05±.06̂  7.8±.5 48±4 6.0±.5 

OF-P-AL 2.26+.05 7.3±.4 50±5 6.9+.7 

OF-P-MF 2.03±.05 7.1+.6 42±6 7.0+.8 

20S0-P-AL 2.23±.05 8.0+.5 46i4 5.0±.4 

20S0-P-MF 2.03±.05 8.0+.3 40±3 5.0±.3 

20BT-P-AL 2.21+.09 8.2+.3 49±4 6.0±.4 

20BT-P-MF 2.05+.06 7.6+.4 40±4 5.4+.6 

Stock-AL 3.031.08 10.6+.5 36+4 3.3Ï.4 

Analysis of Variance 

Fat level NS P<.05 NS P<.01 

Fat NS NS NS P<.01 

Meal Pattern P<.001 NS F<.02 NS 

D̂lgltonln preclpitable sterol. 

"MeantSEM. 
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Heart 

Cardiac weight 

Cardiac weight was not influenced significantly by any variable used, 

though groups MF compared to AL tended to have decreased weights (P<.10, 

Table 24). 

Cardiac cholesterol concentration 

The cholesterol concentration of heart was not altered by concentra

tion or source of dietary fat. Meal feeding, however, tended to decrease 

heart cholesterol concentration, (P<slO; Table 24), 

Cardiac ̂  *C-cholesterol 

Dietary fat Source but not level of dietary fat influenced  ̂"̂ C-

dpm recovered in DPS. Groups SO had the lowest value for ̂ "̂ C-dpm when com

pared with groups OF and BT (P<.05). Cholesterol-̂ *C S.A. was also de

creased in SO groups, but the difference was too small to be statistically 

significant. 

Meal pattern Meal feeding decreased * •*C-dpm recovered in DPS 

(P<.01) as well as cholesterol (P<:05; Table 24). 



www.manaraa.com

100 

Table 24. Heart weight, DPS*, 
Experiment 2 

"̂̂ C-DPS and S.A. DPS (î C-dpm X lOVmg). 

Treatment 
Heart 
weight 

Heart DPS 

Treatment 
Heart 
weight 

g 
mg '̂'C-dpm X 10̂  S.A. 

OF-P-AL 1.22±.02̂  1.32+.03 18.91 .7 14.11 .6 

OF-P-MF 1.18+.03 1.241.05 16.011.4 13.011 .2 

20S0-P-AL 1.16+.03 1.251.04 16.311.8 13.2+1 .4 

20S0-P-MF 1.161.06 1.221.04 11.611.0 10.011 .0 

20BT-P-ÂL 1.24±.03 1.28+.05 18.8±1.7 14.6+1.1 

20BT-P-MF 1.101.02 1.22±.03 15.5+1.5 12.6±1.2 

Analysis of Variance 

Fat level NS NS NS NS 

Fat NS NS P<.05 NS 

Meal pattern P<.10 P<.10 P<,01 P<.05 

D̂igitonin precipitable sterol. 
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Feces 

Fecal  ̂"̂ C-acid̂  

Dietary fat Concentration and source of dietary fat did not in

fluence the quantity of total acid steroid-̂ **0 excreted (Experiments 2 and 

3, Table 26). When acid-̂ '̂ C excreted was expressed as percent of total 

excreted steroid-̂ Ĉ, both concentration and source of dietary fat influ

enced the proportioning of label. Low-fat groups excreted 85% of total 

label in the acid fraction as opposed to 80 and 71% by groups SO and BT 

(P<.001, Experiment 2). Groups BT compared with groups SO excreted 71 

versus 80% (Experiment 2) and 74 versus 82% (Experiment 3) of total labeled 

steroid in the acid fraction. In both experiments the increase with SO 

was highly significant (P<.001). The difference in proportion between OF, 

SO and BT is illustrated in Figure 6. 

In the third study groups SO consumed less food than groups BT. Fecal 

bulk appeared to be associated with quantity of diet consumed. Consequent

ly, fecal bile acid fraction was expressed as *̂C-dpm/g diet consumed. 

When excretion data were calculated in this way, groups SO excreted more 

acid label than did groups BT Experimemt 3, Table 27. Figure 7). 

In Experiment 2 fat source did not influence this parameter but this dis

crepancy is easily explainable on the basis of differences in hepatic cho

lesterol S:A: with fat source-

F̂ecal ^̂ C-acid (bile acid, acid steroid) by chloroform:methanol ex
traction following removal of neutral nonsaponifiable lipid with petroleum 
ether. 
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Table 25. Fecal acid and neutral ̂ Ĉ-steroid (Experiments 2 and 3)̂  

Experiment 2 

Fecal steroid 
Treatment 

Acid 
*\C-dpm X 10̂  

Neutral 
"̂̂ C-dpm X 10® 

Total 
i'*C-dpm X 10® 

Acid-î C 
% total 

Depleted 
control 572+ 44̂  96+12 668± 48 86+1 

OF""P""AL 803± 90 156+16 960+ 99 84±1 

OF-P-MF 718±109 149+25 931+147 85+1 

20S0-P-AL 817± 71 2i0±i8 1027i 80 79±i 

20S0-P-MF 588+ 62 153+17 741± 44 80±1 

20S0-4P-AL - - - — 

20S0-4P-MF - - — -

2ÛBT-P-AL 6S7± 70 3Û3±21 996± 72 69i2 

20BT-P-MF 714± 54 271±42 991+ 90 73+3 

20BT-4P-AL - - - -

20BT-4P-MF - — — -

Stock-AL 1376+148 245+20 1621±200 85±1 

Variable means and analysis of variance are in Table 26. 

"MeantSEMo 
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Experiment 3 

Fecal steroid 

Acid Neutral Total Acid-̂ \c 
C-dpm X 10̂   ̂ C-dpm x 10̂  C-dpm x 10̂  % total 

777+ 96 206±38 984±133 80+1 

680+132 170+35 851±161 80±2 

621± 69 140+40 762±101 83±2 

663+ 82 118+14 780+ 92 85+1 

629+ 62 250±91 879± 90 74+7 

555± 59 199±34 754+ 73 74+3 

628± 33 225±17 , 853± 42 74±1 
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Table 26. Fecal acid and neutral '''C-steroid: Variable means and analy
sis of variance 

Fecal steroid 

Acid steroid Neutral steroid Total steroid Acid-̂ Ĉ 
^̂ C-dpm X 10® **C-dpm x 10® *̂ C-dpm x 10® % total 

Treatment 

Exp. 2 Exp. 3 Exp. 2 Exp, 3 Exp. 2 Exp. 3 Exp. 2 Exp. 3 

OF 756 — 153 - 945 - 85 -

20SO 708 681 183 155 891 806 80 82 

20BT 686 599 290 212 994 783 71 74 

AL 760 661 222 203 997 802 77 78 

MF 675 621 192 166 886 787 79 79 

P — 662 — 204 — 830 — 77 

4P - 624 - 168 - 768 - 79 

Analysis of Variance 

Fat NS NS P<.00i P<.02 NS N3 F<.001 P<.001 

Meal pattern NS NS NS NS NS NS P<.02 NS 

Protein - NS - NS - NS - NS 
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F E C A L  ' " ^ C - S T E R O I D  
( %  o f  T o t a l )  

Acid Q 

Neutral S 

FAT 
Pc.001 

MEAL PATTERN 
P<.05 

PROTEIN 
NS 

OF SO BT AL MF 4P 

85% 
81% 

lO/ù 

71% 

19% 

77% 
79% 

21% 

77%  ̂

23% 21% 

Figure 6. Fecal acid and neutral steroid (% of total excreted steroid 
**C-dpm). Experiments 2 and 3 
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Table 27. Acid and neutral î C-8terold excreted̂ /g diet consumed 

Acid steroid excreted Neutral steroid excreted 
î C-dpm/g diet î C-dpm/g diet 

Treatment 

Experiment 2 Experiment 3 Experiment 2 Experiment 3 

Depleted 
control - - - -

OF-P-AL 45901548̂  - 718± 97 -

OF-P-MF 4121+462 - 918±137 -

20S0-P-AL 47531417 3858±550 1201+102 1024+202 

20SÛ-P-MF 3850x180 4414+894 983± 85 1080+201 

20S0-4P-AL - 3479±388 - 789±223 

20S0-4P-MF - 4569+378 - 811+ 79 

2ÛBÏ-P-ÀL 3730±36S 3033±202 1627±123 752+ 66 

20BT-P-MF 45201428 3033+265 1726+264 10891168 

20BT-4P-AL - 3150+292 - 1125+114 

20BT-4P-MF - 3233+314 — 1052+135 

Stock-AL 4909±643 - 880± 92 -

Analysis of Variance 

Fat NS P<.01 P<.001 NS 

Meal pattern KS NS NS NS 

Protein - NS - NS 

\arge intestine contents were included with excreta. 

\ean±SEM. 
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F E C A L  M C - S T E R O I D / G  D I E T  C O N S U M E D  
(Experiment 3) Acîd Q 

Neutral̂  

4-
BT SO 

! 3-" 

1 
a 

MF TC MF 

Figure 7. Fecal acid and neutral steroid (î C-dpm/g diet consumed). 
Experiment 3 
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Meal pattern AL and MF groups excreted similar amounts of  ̂'•C in 

bile acid in both experiments (Tables 25 and 26). MF groups excreted a 

larger percentage of label in bile acid than did AL rats in Experiment 2 

(P<.02) but not in Experiment 3 (Table 26, Figure 6). 

Groups MF and AL also excreted similar amounts of  ̂̂ C-acid/g diet con

sumed (Table 27) when all groups were included in analysis of variance. 

When SO was the dietary fat source, however, significantly more acid ster-

oid-î C/g diet was recovered in MF groups compared with AL groups (Figure 

7). 

1 
Fecal ̂  '*C-neutral 

Dietary fat Low-fat groups excreted less neutral steroid-̂  when 

compared to SO and BT fed rats (Experiment 2). Source of dietary fat 

(SO or BT) influenced î C-neutral excretion in both Experiments 2 and 3. 

Groups BT excreted more label than did groups SO (P<.001, Experiment 2; 

P<.02, Experiment 3). When excreted neutral steroid-̂ Ĉ was expressed per 

g diet, however, excretion was not altered by dietary fat (Experiment 3, 

Table 26, Figure 7). 

Mssl pattern Neither total neutral steroid-̂ Ĉ (Table 26) nor 

neutral steroid-̂ Ĉ/g diet (Table 27, Figure 7) recovered from feces was 

altered by meal pattern. 

Dietary protein Low sad adequate protein diets Influenced all 

parameters of neutral steroid excretion similarly. 

F̂ecal î C-neutral (neutral steroid) by petroleum ether extraction 
from an aqueous solution of basic pH. 
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Carcass 

Carcasŝ  cholesterol concentration 

Neither total mg carcass cholesterol nor mg chplesterol/100 g body 

weight were influenced by treatment variables used (Experiment 2, Table 

28). 

Carcass i *• C-choleaterol 

Though total neutral steroid-̂ '̂ C was not influenced by any treatment 

at the level of statistical significance, dietary fat tended to Influence 

the amount of digitonin preclpitable-̂ '̂ C. SO groups tended to have less 

'̂'C-DPS than did groups OF and BT (P<.10), though this difference may be 

an artifact produced by oxidation of cholesterol during carcass hydrolysis. 

For whatever reason, groups SO and BT had smaller ratios of "̂̂ C in DPS 

total neutral nonsaponifiable label than did low-fat groups (P<.02, Table 

28) .  

Carcass" composition 

Carcass lipid In Experiment 1, carcasses of 5 rats from each treat

ment were analyzed for fat and moisture-. Fat-free residue (nonlipid, non-

water) gain was calculated by difference. 

Carcass, as used here, refers to the whole rat minus liver, epididy-
mal fat pad, kidneys, heart, small and large intestines and about 10 ml 
blood. Data are from carcass hydrolysis in Experiment 2 only. 

2 
Carcass refers to the whole rat minus liver, epididymal fat and about 

10 ml blood. Data are from Experiment 1 only. 
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Table 28. Carcass DPŜ , total neutral ̂ Ĉ-steroid and "̂"C-DPS as 
proportion of total neutral '"̂ C-sterold (Experiment 2) 

Carcass DPS 
Total 

neutral steroid 
C-dpm X 10® 

'̂•C-dpm DPS 

Treatment 

mg mg/100 g 
 ̂"̂ C-dpm 
X 10* 

Total 
neutral steroid 

C-dpm X 10® 1'•C-dpm total 

Depleted 
control 395+19̂  143±6 6.0±.4 15.4± .8 .39 

OF-P-AL 
OF-P-MF 

415±12 
398+13 

128±4 
127+4 

5.2±.2 
5.2+.4 

10.5+ .4 
10.5+ .6 

.49 

.53 

20S0-P-AL 
20S0-P-MF 

419±14 
407+19 

123±4 
126±ô 

4.3+.3 
4.9+.3 

10.0+1.2 
10.4± .3 

.38 

.47 

20BT-P-AL 
20BT-P-MF 

404±10 
421±11 

119±3 
129+4 

5.3±.3 
5.4+.4 

11.2+ .5 
12.8+ .8 

.48 

.44 

Stock-AL 502+12 135+2 3.9+.3 9.2±1.0 .42 

Û? 
20S0 
20BT 

4G6 
413 
413 

125 
124 

5.2 
4.6 
5.4 

10.5 
10.4 
12.0 

51 

.44 

.46 

AL 
MF 

413 
407 

124 
127 

5.0 
5.2 

10.8 
11.2 

.46 

.48 

An«ly«iB of Variance 

Fat 
Meal pattern 

NS 
NS 

NS 
NS 

P<.10 
NS 

NS 
NS 

P<.02 
NS 

D̂igitonln precipitable sterol. 

M̂ean±SEM. 
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Dietary fat Carcasses of depleted controls contained 1.8% 

fat. Refeedlng increased % of body fat above that of depleted controls 

with all treatments (Table 21). Low-fat groups did not deposit̂  as much 

body lipid as did SO groups (P<.001, Table 29). Groups OF and SO deposited 

22 and 36 g fat during the refeedlng period, respectively. These gains in 

body fat represent increases of 355 and 590% over mean value of 6.2 g for 

carcass lipid in depleted controls. In all fat-related parameters calcu

lated - fat as percent body weight, g body fat deposited during refeedlng, 

fat as percent weight gained, percent of kcal consumed deposited as fat -

groups SO had higher values than did groups OF (P<.001 for all comparisons, 

Table 21). 

Meal pattern Animals deposited practically identical amounts 

of body fat (Table 21), despite the fact that meal fed animals gained sig

nificantly less weight and consumed fewer kcal during the 10 day refeedlng 

period. With the exception of diet 20S0-P; meal feeding led to deposition 

of more dietary energy as body fat than did ad libitum feeding though 

overall statistical significance was not obtained with variation in feeding 

frequency (Table 21). 

Dietary protein Although rata fed adequate dietary protein 

gained about 25% more weight than did rats fed low protein diets, none of 

the increase in weight was due to body fat (Table 29)̂  Groups P and 4P 

had similar values for all fat-related parameters calculated (Table 21). 

Hipid deposited (g) = total carcass lipid (including liver and 
epidldymal lipid) - 6.2 g (mean depleted carcass lipid). 
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Table 29. Change in carcass composition with realimentation (Experiment 1) 

Deposition during refeeding 

Treatment body weight 
g Lipid* Water'' Fat free solidŝ  

g g g 

Depleted control - - - -

OF-P-AL 4714̂  21+1 23+3 5+ .9 

OF-P-MF 48±2 22+1 23±2 5± .5 

0F-4P-AL 67+5 20±2 41±6 9± .9 

OF—4P—MP 71+4 23±3 38±4 8+1.4 

20S0-P-AL 68±5 38±1 25+4 5±1.1 

20SQ-P-MF 60±3 29+2 28±2 3±1.0 

20S0-4P-AL 97±6 38±2 47+6 12±2.8 

20S0-4P-MF 90+6 39±3 46±3 6+1.4 

Analysis of Variance 

Fat P<.001 P<.001 P<.05 NS 

Meal pattern NS NS NS NS 

Protein P<.001 NS P<.001 P<.01 

*Llpid deposited (g) = total carcass lipid (including liver and 
epldldymal lipid) •= 6.2 g (mean depleted carcass lipid). 

'"water gain (g) = total carcass water - 201.6 g (mean depleted 
câifcâss water) . 

F̂at free solids gained (g) = [autopsy weight (g) - 298 g (mean 
depleted autopsy weight)] - lipid deposited (g) - water gain (g). 

êaniSEM. 
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Moisture 

Dietary fat Although lipid deposition was the primary reason for 

differences in weight gain between groups OF and SO, increased amounts 

of body water were retained with increased fat in groups SO (P<.05, Table 

29). 

Meal pattern Groups AL and MF retained similar quantities of body 

water during refeeding (Table 29). 

Dietary protein Increased dietary protein resulted in increased 

water retention. 

Fat-free solids (FFS)̂  

Dietary fat Rats consuming diets OF and SO deposited similar 

amounts of fat-free solids during the 10 day refeeding period (Table 29). 

Meal pattern Meal feeding decreased regeneration of fat-free 

solids with SO but not with low-fat diets. 

Dietary protein Fat-free residue increased with a change in pro

tein intake from P to 4P (P<.01, Table 23). About 50% of weight gained 

with the higher level of protein was water. 

F̂at-free solids = g gain - (g lipid gained + moisture retained). 
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DISCUSSION 

In these studies we have used an experimental model suitable for 

studying acute changes in lipid metabolism. After severe dietary restric

tion, rats received ample calories and protein and regained weight rapidly. 

The short accelerated realimentation will be used to interpret results 

from these studies.. The experimental model employed may mask changes which 

would be evident with a longer period of refeeding. Acute changes, however, 

are more easily interpreted with regard to sequences in biochemical events 

than are changes seen in animals in physiological equilibrium. 

The rats were injected with 4-̂ Ĉ-cholesterol 6 days prior to sacrifice. 

Under these conditions label did not equilibrate with all body cholesterol 

pools. The rapidly equilibrating cholesterol pool (Goodman et al., 1973), 

which Includes serum and hepatic cholesterol, had the highest concentra

tion of the radiotracer during the 6 days following injection of '̂'C-cho-

lesterol. Label excreted largely indicated the acute turnover of choles

terol from the rapidly equilibrating pool, primarily from degradation of 

cholesterol to bile acids. 

Approximately 80% of excreted steroid-'was recovered in the acid 

steroid fraction of feces in the present study. Other investigators have 

injected a single dose of A-̂ Ĉ-cholesterol with similar results over a 

short period of time (Dupent et al., 1972; Bcbek et al., 1973b), despite 

the fact that only about 50% of fecal steroid is in the acid steroid frac

tion (Wilson and Siperstein, 1959; Moore et al., 1968). Loss of cholester

ol from slowly equilibrating pools (such as muscle and nerve tissue) was 
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underestimated by the radioanalysls. 

In these studies cholesterol biosynthesis has been determined by 

assessing incorporation of Ĥ-acetate into DPS 3.5 hours after feeding and 

2.5 hours after injection of radiotracer. Acetate label incorporated into 

neutral lipid minus in DPS has been interpreted as a measure of fatty 

acid synthesis. 

The experimental model used may not have allowed demonstration of 

differences in cholesterol biosynthesis between variables which would exist 

under other experimental conditions for several reasons. First, the. severe

ly restricted state of the rats prior to reaXlmentation may have altered 

biochemical priorities for nutrient use. Secondly, changes in acetate pool 

size may have occurred with meal feeding. In nutritional states such as 

long-term fasting pool size will Increase (Dletschy and Brown, 1974), 

though it is unlikely that large discrepancies in acetate pool S.A. occur 

in these studies with repeated short-term fasting. Small increases in 

pool size with Intermittent fasting are probably compensated for by the 

injection of the same radioactivity Into a relatively smaller animal (î-lF 

compared to AL). 

Thirdly, discrepancies between daily enzymatic activity maxima may 

occur with these meal patterns (Dugan et al., 1972). Lighting was reversed 

in all experiments 80 thai; the dark part of the cycle occurred between 9 

A.M. and 9 P.M. MF groups were allowed access to food only between 9 A.M. 

and 5 P.M.; AL groups had access to food at all times, but preferred to 

consume most of their food during the same S hour period in which MF groups 

ate. 
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New evidence is available on HMG-CoA reductase activities in ad libi

tum fed rats under normal illumination (Edwards et al., 1972). From these 

data it seems that AL groups in our study under conditions of reversed 

illumination would be expected to demonstrate maximal cholesterogenesis 

close to 2 P.M. In meal fed animals, trained to eat between 9 A.M. and 1 

P.M., maximal cholesterogenesis seems to occur at about 6 P.M., approxi

mately 9 hours after feeding (Edwards et al., 1972). 

Finally, maximal rates of cholesterogenesis did probably not occur 

until a few hours after measurements of acetate incorporation into choles

terol were made in this study, 3.5 hours after food consumption (Edwards 

et al., 1972; Goldfarb and Pitot, 1972). An accurate assessment of the in

fluence of feeding frequency on cholesterogenesis may require measurement 

of HMG-CoA reductase activity at a number of points throughout a 24 hour 

period. 

Findings reported here confirm those of other investigators who demon

strated that serum cholesterol concentrations increase with limited access 

to food (Scpslsr. et al., 1962; Wells et al=v Î963; Cohn. 1964: 

Leveille and Hanson, 1965; Reeves and Arnrich, 1974). A 10 day refeeding 

period does not consistently allow demonstration of decreased serum choles

terol concentration with polyunsaturated fat or increased protein, though 

such changes might occur with an extended refeeding period (Jagannathan 

and Gopalan, 1963; Kenney and Fisher, 1973). After 10 days of refeeding, 

however, protein decreased serum cholesterol concentrations with SO but 

not with BT. 

Serum cholesterol concentrations are indicative of body cholesterol 
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metabolism. The following discussion will deal with parameters measuring 

cholesterol transport within the rapidly equilibrating cholesterol pool, 

biosynthesis, (re)absorption, degradation and excretion. Changes in these 

parameters with dietary fat, meal pattern and level of dietary protein 

will be examined» 

Cholesterol Transport 

Transport of cholesterol and other lipids within the circulating pool 

is accomplished by plasma lipoproteins synthesized in hepatic parenchymal 

cells (Hamilton, 1972)= The equilibrium of serum and hepatic cholesterol 

within the serum and hepatic cholesterol pool has been shown to be altered 

by a number of dietary factors including dietary fat, protein concentration 

and feeding frequency. 

Data from these studies indicate that transport of cholesterol wlthiu 

the serum-hepatic pool is influenced by degree of saturation of dietary 

fat. though serum cholesterol concentrations did not decrease with polyun

saturated fat; Increased dietary protein decreased both serum and hepatic 

cholesterol concentrations. In the presence of polyunsaturated fat, the 

major decreases occurred with protein, whereas with saturated animal fat 

dietary protein did not seem to alter serum and hepatic cholesterol con

centrations (Table 7). 

A shift of serum-hepatic cholesterol equilibrium toward liver has 

been demonstrated with polyunsaturated fat in rats, with (McGovern and 

Quackenbush, 1973b) and without (Avigan and Steinberg, 1958) dietary cho

lesterol supplementation. We have seen neither increased hepatic cho-
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lesterol concentrations nor decreased serum cholesterol concentrations con

sistently in these studies with SO. The inverse correlation between serum 

and hepatic cholesterol concentrations, however, was consistently higher in 

SO compared with OF and BT groups (r = -.66 versus r = -.26 and r = -.54). 

The present findings and those of Reeves (1971) demonstrated that ele

vated serum cholesterol concentrations with meal feeding were accompanied 

by reciprocal decreases in hepatic cholesterol concentrations (Figure 8). 

In another study, hepatic cholesterol concentrations were decreased with 

meal feeding in agreement with studies in this laboratory, though serum cho

lesterol concentrations with ad libitum and meal fed swine were similar 

(Anderson and Fausch, 1964). 

In the present study, elevated serum cholesterol concentrations with 

meal feeding may result from adaptation to periodic fasting, for 16 of 

every 24 hours. There is evidence that differences in cholesterol concen

trations between meal patterns increase with time. Elevation of serum cho

lesterol concentrations with meal feeding were more marked at 30 than 10 

days in rats fed in this laboratory under model, dietary and meal condi

tions identical with the present study (Reeves and Arnrich, 1974). Dif

ferences between AL and MF fed monkeys in another study were greater at 8 

than at 4 weeks (Gopalan et al., 1962). 

Data from several sources can be used to speculate ou a possible 

cause of increased serum cholesterol concentration with meal feeding. 

Fasting is known to elevate plasma free fatty acid concentrations. The 

concentration of free fatty acid probably regulates in vivo hepatic tri

glyceride production (Prigge and Grande, 1973). In rats very low density 
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lipoproteins (VLDL) are secreted by the liver and function in triglyceride 

transport from the liver. Experimental evidence supports the idea that 

rate of synthesis and secretion of triglyceride by the liver is increased 

with meal feeding. In the first study about 25% more lipid was recovered 

with meal feeding than with continuous eating. Hypertriglyceridemia has 

been shown to occur in man with decreased feeding frequency (Wadhwa et al., 

1973). VLDL require the inclusion of phospholipid and cholesterol for 

stability (Goh and Heimberg, 1973). Elevated serum cholesterol concentra

tions with meal feeding may be secondary to elevated serum triglyceride 

formation in response to free fatty acid concentrations. 

Though proportioning of serum-hepatic cholesterol was altered by meal 

pattern, radiochemical evidence from the present studies suggests that 

serum and liver cholesterol were in close equilibrium: serum and hepatic 

cholesterol S.Â. within each trèàuaent were almost identical (Tables S 

and 14). Two mechanisms which should be considered in the underlying cause 

for decreased S.A. with meal feeding are dilution of label by increased 

biosynthesis and dilution by mixing with cholesterol of relatively lower 

S.A. cholesterol pools. Radiochemical evidence from these studies pre

cludes elevation in hepatic or intestinal cholesterogenesis with meal 

feeding (Table 33), 

Reduced cholesterol S=A= with meal feeding may. then, result from 

shifts of cholesterol of low S.A. into the circulating cholesterol pool. 

Acute labeling with * "̂ C-cholesterol in these studies resulted in choles

terol S.A. greater in liver and serum than in pools which are not in rapid 

equilibrium. A shift of cholesterol from these tissue pools to the rapidly 
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equilibrating pool would account for the decreased cholesterol S.A. ob

served in serum and liver. In all cases but one, ̂ "*0 recovered in neutral 

steroid and cholesterol S.A. in Intestine, kidney, heart and epididymal 

lipid were decreased by meal feeding (Experiment 2, Table 30). 

The combined hepatic and serum cholesterol values show an apparent 

decrease in pool size in groupe MF compared with groups AL, except when 

protein intake la Increased (Table 31). The data may help to explain the 

loss of the inverse relationship between serum and hepatic cholesterol con

centration with increased protein, though serum cholesterol concentrations 

continue to be elevated with meal feeding in these groups. Hepatic cho

lesterol concentrations, specifically the concentration of hepatic choles

terol ester, were elevated after low protein diets. These results suggest 

Impaired transport of cholesterol from the liver. Increases in dietary 

protein decreased hepatic cholesterol concénccâtlon as well as serum cho

lesterol concentration in Experiment 3 (Figure 9). 

Though the findings above may indicate impaired transport from the 

liver, at least one aspect of hepatic metabolism of cholesterol esters 

seems normal. Impaired hepatic function has been suggested to result in 

entrapment of serum cholesterol ester in liver (Fex and Walllndee, 1973). 

Decreased hepatic weight after depletion la justification to suspect de

creased hepatic function* During the 10 day refeeding period, liver size 

increased from 33 to 100% over the depletion value (Table 11). Choleater-

ol ester patterns, however, indicated normal function at the end of the 

feeding period ; hepatic and the corresponding serum GEFA patterns were 

distinctly different (Table 10). Hepatic CEFA patterns appeared to be in-
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Table 30. Neutral ̂ Ĉ-steroid and specific activities DPŜ  

InSL S""? 
Meal 
pattern 

"̂̂ C-dprn . "̂c-dpm „ . "̂̂ C-dpm „ .  ̂"̂ C-dpm „ . "̂̂ C-dpm 
X lb' S.A.  ̂1,3 S.A.  ̂̂ g, S.A.  ̂1,3 S.A.  ̂1̂ 3 

AL 414 15.8 192 4.6 48 6.0 18 14.0 30 

MF 266 13.1 162 3.9 40 5.8 14 11.9 22 

P<.001 P<.01 P<.05 P<.05 P<.02 NS P<.01 P<.05 P<.01 

**Digitonin precipitable sterol. 

Ŝpecific activity data not available. 
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Table 31. Estimate of total cholesterol present in serum and liver 

Experiment 1® 

Treatment Treatment 

Serum(mg)̂  Liver(mg) 
Serum & 
liver (mg) 

Depleted control 3.9 15.4 19.3 

OF-P-AL 6.6 28.4 35.0 

OF'"P""MF 8.2 21.8 30.0 

0F-4P-AL 7.1 22.8 29.9 

0F='4P='MF 7.3 20.0 27,3 

20S0-P-AL 6.6 31.2 37.8 

20S0-P-MF 7.3 22.5 29.8 

20S0-4P-AL 6.2 27.9 34.1 

20S0-4P-MF 7.7 26.2 33.9 

20BT-P-AL BO - -

20BT-P-MF - - -

20BT-4P-AL — — -

20BT-4P-MF — — 

Stock-AL - - -

Ŝeruffl values from 5 pooled samples, 2 rats per pool; liver values 
are from 5 individual animals of 10, therefore combined serum and liver 
values are an estimate= 

Assuming 3.3 ml serum/iôû g body weight. 
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Experiment 2 Experiment 3 

Serum(mg) ̂ Liver(mg) 
Serum & 
liver(mg) 

Serum(mg) ̂ Liver(mg) 
Serum & 
liver(mg) 

5.2 12.3 17.5 - - -

5.6 

6.6 

27.5 

18.0 

33.1 

24.6 

-

-

-

5.5 

7.4 

27.7 

21.1 

33.2 

28.5 

7.2 

7.0 

5.6 

6.0 

24.Ô 

18.7 

21.6 

22.0 

31.8 

25.7 

27.2 

28.0 

5.2 

7.4 

26.0 

22.6 

31.2 

30.0 

5.7 

7.2 

5.8 

7.5 

25.4 

22.3 

21.8 

19.8 

31.1 

29.5 

27.6 

27.3 

8.8 24.6 33.4 
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Table 32. The influence of fat source on hepatic and intestinal 
cholesterogenesis (Experiment 3) 

Hepatic DPS Intestinal DPS 
'H-dpm X 10̂  Ĥ-dpm x 10® 

SO 31 42 

BT 28 57 

NS P<.01 

Table 33. The influence of feeding frequency on hepatic and intestinal 
cholesterogenesis (Experiment 3) 

Hepatic DPS Intestinal DPS 
Ĥ-dpm X 10̂  ®H-dpm x 10̂  

AL 29.6 

MF 29.4 

NS 

49.4 

49.3 

NS 

flusnced primarily by availability of fatty acid8= For example, the pre

dominant fatty acid in hepatic cholesterol esters with SO diets was C18:2, 

whereas with low-fat diets fatty acid patterns reflected newly synthesized 

fatty acids, with increased esterification to Clb, C16:l and CIS;!. 

Eaterification of cholesterol in serum is catalyzed by serum lecithin 

cholesterol acyltransferase (Glomset, 1968). The pattern of CEFA in serum 

after low-fat and fat diets reflected the specificity of this enzyme for 

C20;4 esterification of cholesterol (Sugano et al., 1969). The species of 

fatty acids available due to either biosynthesis or dietary intake were 
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also factors in the pattern of serum CEFA; an increased proportion of 

C18:2 and C20:4 was esterlfied to cholesterol when SO diets were substi

tuted for low-fat diets. These cholesterol esters resemble the hepatic 

CEFA pattern and may originate, at least in part, in the liver (Gidez et 

al., 1967). 

Hepatic cholesterol esters had similar fatty acid patterns in AL and 

MF groups though hepatic cholesterol ester concentrations were significant

ly increased with ad libitum feeding (Table 10). 

Cholesterol Biosynthesis 

Results reported here indicate elevated hepatic cholesterogenesis 

with high fat diets compared to low fat diets (Table 13). They are in 

agreement with those of Llnazasoro et al. (1958) and Hill et al. (1960). 

Under conditions of controlled feeding, other investigators have also 

found elevated hepatic cholesterogenesis with fat (Bortz, 1967; Goldfarb 

and Pitot, 1972), Increased rates of cholesterol biosynthesis with high 

fat diets may be related to elevated cellular levels of NADFH. In adipose 

tissue of rats, high fat diets appear to cause excess production over utili

zation of reducing equivalents (Zaragoza, 1974). Maximal activation of 

HMG-CoA reductase occurred after preincubation with NADPH (Tormanen et al., 

1975). These finding suggest that elevated specific activity HMG-CoA re

ductase may be formed with the challenge of high fat diets. 

The observation that increased unsaturation of dietary fat does not 

elevate hepatic cholesterogenesis (Table 32) is surprising in view of the 

fact that most studies have Indicated elevated cholesterol biosynthesis 
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with substitution of polyunsaturated fats for monounsaturated and saturated 

fat sources (Wood and Migicovsky, 1958; Carroll, 1959; Boyd, 1962; Merrill, 

1969; Tria et al., 1971; Dupont et al., 1972). More recently, however, 

Mathiaŝ  failed to demonstrate a difference in cholesterol biosynthetic 

rates with fats identical to those used in the present study. 

The level of dietary fat may determine differences in rates of hepat

ic cholesterogenesis when saturation of dietary fat is a variable. One 

might speculate that with consumption of diets containing 20% fat, as used 

in the present study, NADPH would cease to be limiting for maximal activa

tion of HKG-CoÂ reductase. Reports that increased concentrations of NADPH 

occur with high fat diets, and the suggestion that excess NADPH can maxi

mally activate HMG-CoA reductase (Zaragoza, 1974; Tormanen et al., 1975)» 

would support this speculation. 

The assumption has been made that most recovered in DPS in the 

2 
small intestine is from intestinal synthesis of cholesterol. The rate of 

intestinal cholesterogenesis «as elevated with a highly saturated compared 

with a highly polyunsaturated fat source (Table 32)« Intestinal concen

trations of DPS were also increased with polyunsaturated fat diets compared 

to those containing a more saturated fat source. The combination of ele

vated cholesterol concentration with decreased intestinal cholesterogenesis 

suggests that negative feedback inhibition of cholesterol biosynthesis may 

have occurred with polyunsaturated fat diets. The data are consistent with 

1 
M. Mathias> Colorado State University, personal communication, 1975. 

2 
Small intestine. 
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the pronounced reduction of intestinal HMG-CoA reductase activity seen 

when sterol concentration within the small intestinal crypt cells was in

creased (Shefer et al., 1973). In addition, intestinal cholesterogenesis 

has been depressed in other situations in which intestinal concentrations 

of cholesterol were increased (Cayen, 1971; Chevallier and Lutton, 1973). 

The apparent increase in intestinal compared with hepatic cholestero-

%genesis in these studies (Table 32) is probably a reflection of differ

ences between intestinal and hepatic HMG-CoA reductase activity maxima. 

Optimal cholesterogenesis occurs up to 6 hours earlier in small intestine 

compared with liver (Edwards et al., 1972). 

Data from the present study support neither decreased nor increased 

rates of hepatic cholesterogenesis with meal feeding. Other reports sug

gest that restricted access to food may (Dupont and Lewis, 1963; Dupont, 

1965) or may not (Cockburn and Van Bruggan, 1959) elevate cholesterogene

sis. These studies, though, were completed before the discovery by 

Hamprecht et al. (1969) that cholesterol biosynthesis in ad libitum fed 

rats was maximal at mid-night. In contrast to most investigations.light 

and feeding schedules were controlled in the present study to optimize 

measurement of cholesterogenesis. Under these conditions hepatic and small 

intestinal cholesterogenesis were identical for ÂL and MF rats 3.5 hours 

after feeding (Table 33). Though 3.5 hours after feeding was probably 

less than optimal for measurement of rates of cholesterogenesis, there is 

no reason to suspect that the data are not correct for the conditions of 

these experiments. They indicate no trend in biosynthesis with meal feed

ing in either direction. 
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Cholesterol biosynthesis appeared to be identical for low and adequate 

(4 and 17% of kcal, respectively) protein intakes. The stock ration was 

high in protein (about 25% of kcal) and was associated with elevated cho

ies terogenes is 3.5 hours after food was consumed (Table 13). High dietary 

protein (25 versus 12% of kilocalories) has been associated with increased 

hepatic and intestinal choiesterogenesis (Yeh and Leveille, 1972); however, 

stock rations in general contain more fiber than do semisynthetic diets 

and have been associated with increased hepatic cholesterogenesis. 

A number of natural fibers, including saponins, are present in our 

stock ration. Saponins seem to interfere in (re)absorption of cholesterol 

from the gut (Cheeke, 1971). The elevation in synthesis seen 3.5 hours 

after feeding stock diet may indicate that HMG-CoA reductase is induced by 

a mechanism different from that operating in the induction of HMG-CoA re

ductase by fat or protein. Goldfarb and Bitot (1972) have postulated that 

cholestyramine, a sequesterant of bile acid, and dietary fat induced HMG-

CoA reductase by different mechanisms. They found early elevation of hepat

ic HMG-CoA reductase activity with cholestyramine while stimulation of ac

tivity by fat occurred later. Binding of cholesterol in the gut by dietary 

fibers could perhaps increase hepatic cholesterogenesis by a mechanism 

similar to cholestyramine treatment. 
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Cholesterol (Re)absorption 

Excreta have consistently contained less ̂  ""C-neutral steroid and 

decreased ratios of neutral to total steroid-*̂ C when SO was substituted 

for BT. Increased reabsorption of cholesterol with substitution of poly

unsaturated fat for more saturated fat sources has been suggested to ex

plain observed increases in cholesterol half-life with polyunsaturated fat 

(Bloomfield, 1964; Irltani and Nogi, 1974). 

On the other hand, smaller losses of **C-neutral steroids from the 

rapidly equilibrating pool with polyunsaturated versus saturated fat could 

occur with slowed rate of enterohepatlc circulation. The bile acid pool 

is circulated between liver and gut about 12 times/day (Shefer et al., 

1969) and with each recycling a small amount of labeled hepatic cholester

ol in bile is lost to excreta. Investigators have found decreased hepatic 

secretion of bile acids (McGovem and Quackenbush, 1573c) and alowet in

testinal motility (McGovem and Quackenbush, 1973b) with SO compared to BT. 

the dietary fats used in the present studies. These findings suggest that 

substitution of SO for BT slows the rate of enterohepatlc circulation, and, 

therefore, decreases loss of neutral steroid from the rapidly equilibrating 

pool. 

On the assumption that a decreased rate of enterohepatlc circulation 

accounts for decreased fecal loss of neutral steroid labeli it appears that 

the rate of enterohepatlc circulation in MF rats was slowed in comparison 

to AL groups. In both radiochemical studies, total neutral steroid excre

tion tended to deerease with meal feeding (P<.09s Experiment 2; P<,15, Ex

periment 3, Tables 25 and 26). If enterohepatlc circulation, however, was 
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slowed by meal feeding, the effect may have been related to quantity of 

diet consumed. All difference between groups MF and AL with respect to 

neutral steroid-̂ **0 excretion, in both studies, was negated by expression 

of excreted neutral steroid label on the basis of unit consumption of diet 

(Table 27, Figure 7). 

Dietary protein level did not influence cholesterol absorption in 

studies with chicks (Kenney and Fisher, 1973). Excretion data from the 

present studies with low and adequate protein concentrations are consist

ent with these findings (Tables 25 and 26). A tendency toward increased 

cholesterol and bile acid reabsorption, however, may be indicated fay the 

trend (P<.16) toward decreased neutral steroid-̂ in excreta with 4P com

pared to P diets, especially with dietary SO. Excretion of neutral steroid 

label in BT groups was not influenced by protein, suggesting that animals 

have amply recovered from their previous protein deprivation. A synergism 

between polyunsaturated fat and protein may serve to increase reabsorption 

Cholesterol Degradation 

It is generally accepted that polyunsaturated fats increase cholester

ol degradation to bile acids. Direct evidence for this statement comes 

from analysis of bile obtained by bile duct cannulatlon following portal 

administration of "H-cholesterol (HcGovem and Quackenbush, 1573c). In

direct evidence comes from excretion of acid steroid and from measurements 

of cholic acid half-life (Antonis and Bersohn, 1962; Gordon et al;, 1964; 

Llndstedt et al., 1965; Moore et al., 1968; Connor et al., 1969). Data 
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presented here further support that cholesterol degradation is increased 

with polyunsaturated fat. Substitution of SO for BT tended to increase 

fecal bile acid-̂ Ĉ in Experiment 3 (P<.13, Table 26). Since there were 

differences in food consumption between rats fed SO and BT, fecal bile 

acid-î C was expressed as ̂ Ĉ-dpm/g diet consumed. Equalization of label 

excreted on the basis of food consumption showed that SO significantly in

creased acid steroid excretion (Table 27; Figure 7). 

Total fecal sterold-̂ *C was fractionated into acid and neutral ster

oids. The Increased proportion of acid steroid label excreted with sub

stitution of SO for BT in the radiochemical studies (Figure 6) is another 

indirect support for increased degradation of cholesterol with SO. This 

significant increase in proportion of bile acid-̂ *C with SO, however, also 

reflects decreased loss of neutral steroid ̂ Ĉ-label. 

Finally, there Is iadirecî; evidence from approxiaats calculations of 

bile acid S.A. which suggests that polyunsaturated fat increases the deg

radation rate of cholesterol. Assuming a theoretical bile pool size of 

14 mg/100 g body weight (Shefer et al., 1969) and by dividing this value 

into intestinal steroid-̂ "*0 a figure for bile acid S.A. was obtained. As

suming that the S.A. of bile acid was influenced by the S.A. of its precur

sor cholesterol; the calculated value was expressed relative to hepatic 

chclcsterol S;A; For example, group 20SO-P—AL had a mean weight of 373 g, 

combined hepatic and intestinal acid steroid label of 193.7 x 10̂  î C-dpm, 

and hepatic cholesterol S.A. of 11.5 x 10̂  '̂*C-dpm. Therefore: 

Bile acid pool size = (14 x 3.73) = 52.2 mg 

Bile acid S.A. = 193.7 = 3.71 
52.2 

Bile acid S.A./hepatic cholesterol S.A. = 3.71 = .324 
11.5 
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Data from other groups were calculated in the same way. Ratios of 

bile acid S.A. over hepatic cholesterol S.A. were; 

20S0-P-MF .323 

20BT-P-AL .207 

20BT-P-MF .185 

The data indicate relatively higher bile acid S.A. with 20S0-P compared 

with 20BT-P diets. Kritchevsky et al. (1974) have interpreted increased 

bile acid S.A. as a measure of bile acid synthesis. If this is correct 

then the calculations would indicate that SO increased bile acid synthesis. 

The enterohepatic circulation of bile acids may have influenced the 

rate of cholesterol degradation with polyunsaturated fat diets. Bile acid 

flux (mg/100 g body weight/hour) is important in maintaining feedback in

hibition of bile acid synthesis (Shefer et al., 1969). Decreased bile 

acid flux might increase hepatic bile acid synthesis due to loss of nega

tive feedback inhibition. Reduced rates of enterohepatic circulation of 

Bile âcldâ lïave been dsnoristrated with SO cô psrad tc BT (McCovcra end 

Quackenbush, 1973b). These are the same fat sources used in the present 

study. Decreased intestinal motility with SO diets (McGovern and 

Quackenbush, 1973b) may contribute to the mechanism by which the rate of 

enterohepatic circulation is decreased. 

Data related to acid steroid=̂ '*G excretion in the present studies 

generally support the hypothesis that feeding frequency does not influence 

cholesterol catabolism. Though acid steroid-̂ Ĉ excretion tended to be 

decreased with meal feeding in the first radiochemical study, hepatic cho
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lesterol S.A. was also decreased significantly with meal feeding (Tables 

26 and 14). Thus the assumption was made that bile acid synthesized from 

cholesterol in the liver and excreted in feces was also of reduced S.A., 

and therefore, that *̂ C-label recovered underestimated bile acid excretion 

in meal fed rats. In Experiment 3, hepatic cholesterol S.A. was not in

fluenced by feeding frequency and neither was excretion of total acid 

steroid label in agreement with Bobek et al. (1972, 1973a). 

The proportion of total steroid-̂ Ĉ excreted in the acid steroid 

fraction increased slightly with meal feeding (P<.05, Figure 6). This 

small increase in proportion of acid steroid may be a reflection of de

creased neutral label excreted by MF animals over the six day period af

ter injection. 

It appears that meal feeding does not influence synthesis of bile 

acids, except possibly with polyunsaturated rat feeding. Since MF 

groups consumed significantly less food than did AL groups, the excre

tion of label in the third study was expressed relative to food con

sumed (̂ "̂ C-dpm excreted/g diet consumed). Based on these calculations 

meal pattern had no effect on these parameters with BT diets. When SO 

was substituted for BT, however, meal feeding significantly elevated acid 

steroid-*"C excretion (Table 27, Figure 7). An increase in label excre

ted per unit diet consumed ia interpreted to indicate increased catab-

olism of labeled cholesterol. 

Yeh and Leveille (1973) concluded that high dietary protein increased 

excretion of cholesterol and bile acids in the feces. In the present 

study high protein diets (except the stock ration) have not been fed, but 
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when low and adequate protein levels were compared, there was no indica

tion that cholesterol turnover increased with dietary protein. Overall ex

cretion of labeled acid and neutral steroid with low and adequate protein 

diets was similar (Table 26). In fact there was a tendency for adequate 

protein to decrease acid steroid excretion with SO diets. Rats used in 

these studies were severely depleted of dietary protein prior to realimen

tation. Experiments from our laboratory with similarly treated animals 

had shown that nitrogen retention during the 10 day realimentation period 

increased progressively as protein intake increased from P to 4P (Chang, 

1971). This was evidence, that even with liberal dietary protein, reple

tion was incomplete after 10 days of refeeding. The excretion response 

seen with the increased protein after 10 days may be affected by preferen

tial use of protein for lipoprotein synthesis to facilitate absorption. 

The pattern of excretion might be expected to change with prolonged periods 

of refeeding as rats become repleted with respect to this nutrient. 

Recovery of fecal bile acid-̂ Ĉ was twice as high with stock diet com

pared to semisynthetic diets. The results are not surprising in view of 

reports that stock diets, compared to semisynthetic diets, increased excre

tion of acid steroid and enhanced cholesterol 7 a-hydroxylation (Antonis 

and Bersohn, 1962; Jacobson et al., 1973; Bâlmêï and Zilversmlt, 1974; 

Kritchevsky et al., 1974 and Johansson, 1970). 
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Carcass Composition 

Carcass analysis data demonstrated that body weight and all parameters 

of lipid deposition calculated Increased (P<.001) when high fat diets were 

substituted for low-fat rations (Table 21). These findings confirm results 

obtained in a long term study with young rats, in which high-fat and grain 

rations were compared (Schemmel et al., 1970; Schemmel et al., 1972), A 

small increase in body water (P<.05) accompanied lipid deposition with 

high fat diets, but the fat-free solids (FFS) were not altered by fat feed

ing. 

After 10 days of realIssntation, body composition was not affected by 

meal pattern (Table 21) despite a significant reduction in food consumption 

by MF groups (Table 38). The excellent correlation between carcass and 

epldidymal lipid (r = +.85, Figure 5) justifies certain deductions from 

earlier experiments in which analyses had been limited to epldidymal lipid 

(Reeves, 1971). In those experiments the refceding period had been ex

tended from 10 to 30 days. Reeves' data suggest that meal feeding increases 

body fat compared to the ad libitum regimen, if adequate time is given for 

recovery. 

Cohn and Joseph (1968) suggested that changes in body fat composition 

with decreased periodicity of food intake were contingent on the consump

tion of at least 80% of kcal consumed by ad libitum fed controls. In ex

periments in this laboratory, MF rats met this criterion with what appeared 

to be increased carcass fat (Reeves, 1971). 

Increased dietary protein concentration increased weight gain during 

realimentation. Weight gain represented mostly fat free solids (FFS) accom-
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panled by a large Increase In body water. Earlier Investigations in this 

laboratory had demonstrated Increased nitrogen retention with 4P versus P 

rations after 10 days of refeeding (Chang, 1971). These results are con

sistent with the assumption made here that the FFS fraction is largely 

protein in nature. 

Lipogenesls 

It is well documented that lipogenesls is decreased by high fat ra

tions. Data from this study are in agreement with those of others indi

cating that dietary fat suppresses lipogenesls (Experiment 2, Tables 17 

and 22). Fat source did not consistently Influence lipogenesls as measured 

by acetate Incorporation into fatty acids in the present study. Substi

tution of BT for a polyunsaturated fat increased hepatic and epldldymal 

lipogenesls (Experiment 2) in agreement with Dupont et al, (1972); The 

same trend toward increased hepatic lipogenesls with the saturated fat 

source was shown in the third experiment. 

Incorporation of ̂ H-acetate Into hepatic and adipose lipid was in

creased by meal feeding, but not to the level of statistical significance. 

There is a possibility that secretion of newly synthesized fat from the 

liver is altered by meal pattern so that the relative differences in lipo-

genic capacity are lost. Reeves (1971), however, did not find large in

creases in NABPH generating enzyme systems or in citrate cleavage enzyme 

(indicators of lipogenesls) with the same meal patterns as used in these 

studies. The enzymatic data (Reeves, 1971) combined with radiochemical 

data suggest that lipogenesls is not greatly elevated with the meal pattern 
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used here since animals are not acutely challenged with food. Investiga

tors who have restricted access to food to shorter periods of time have 

found increased lipogenesis with decreased feeding frequency (Allee et al., 

1972), though more recently other investigators have reported similar lipo-

genic responses in trained meal eaters compared to ad libitum consumers in 

response to a single meal (Baker and Huebotter, 1973). 

Meal feeding seemed to increase the proportion of total fatty acid 

synthesized in epididymal tissue, as representative of adipose tissue. 

Rough calculations of adipose contribution to lipogenesis were made, 

assuming similar lipogenic rates in all adipose tissue sites, though this 

is probably an oversimplification (Anderson.et al., 1972; Pothoven and 

Beitz, 1973). The calculations of adipose tissue contribution to lipo

genesis were made by multiplying weight of adipose tissue (Experiment 1, 

Table 21) by the S.A. of epididymal lipid (Experiment 2, Table 22) and 

comparing the figures obtained with total hepatic lipid-̂ H. These calcula

tions indicated that up to 81% of total lipogenesis occurred in adipose 

tissue in meal fed rats in the present study. Our data indicate an increase 

in adipose contribution to lipogenesis with meal feeding. A further de

crease of the meal period from 8 to 2 hours, to conform with the model of 

Allee et al. (1972), might be expected to further increase the proportion 

of lipid synthesized by adipose tissue. 

Hepatic lipogenesis did not decrease when dietary protein was increased 

from low to adequate concentration (Table 17). These data are not in 

agreement with reports that lipogenesis decreases with substitution of 

high for moderate concentrations of dietary protein (Yeh and Leveille, 
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1969; Govind et al., 1973). Diets used here, however, contained 20% fat 

as compared to 5 and 15% fat in the other studies. The effect of dietary 

protein in decreasing lipogenesis may be overcome by large amounts of die

tary fat. In addition, the reciprocal decrease in dietary carbohydrate 

with increased protein, rather than increased dietary protein alone, may 

account for the decreased rate of lipogenesis. 

Summary 

In summary, the major difference seen in cholesterol metabolism with 

meal pattern alteration was a shift of equilibrium between serum and hepat

ic cholesterol concentrations toward the serum with meal feeding. These 

findings were consistent with the suggestion from Reeves (1971) that in

creases in serum cholesterol with meal feeding were accompanied by decreases 

in hepatic cholesterol concentrations. No evidence was found for differing 

rates of hepatic and intestinal cholesterol biosynthesis with meal pattern. 

The less of ̂  G-cholesterol wag slightly decreased with meal feeding. Loss 

of steroid from the rapidly equilibrating pools however, may have been 

underestimated by a more dilute bile acid precursor pool. The decreased 

excretion of label was attributed to dilution from other body cholesterol 

compartments. This statement is based on the fact that hepatic cholesterol 

S;A= was decreased by meal feeding in both Experiments 1 and 2. 

There was indirect evidence based on expression of excreted bile acid-

 ̂** C/g diet consumed that bile acid synthesis was increased by polyunsatu

rated fat in meal fed animals though the total amount of label in the ex

creta did not reflect such a change. 
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Alterations in a number of parameters seen with polyunsaturated fat 

diets in this study can be reasonably explained on the basis of increased 

rates of cholesterol degradation to bile acids and decreased enterohepatic 

circulation of bile acids. These findings confirm those of other investi

gators. 

This study did not indicate that changes with increases in polyunsatu-

ration were accompanied by increased rates of cholesterol biosynthesis. 

Other investigators, however, have generally reported increased turnover 

as a combination of elevated biosjmthetic and degradative rates of choles

terol. The model used in the studies also did not allow consistent demon

stration of decreased serum cholesterol concentration with polyunsaturated 

fat. These studies may indicate that changes in cholesterol degradation 

precede other changes in cholesterol metabolism. Or increased biosynthesis 

may have occurred with SO feeding though ̂ H-acetate incorporation into DPS 

2.5 hours after food consumption did not indicate such change. 

Increased dietary protein in this study did dccrcase sertis» and hepatic 

cholesterol concentration. These decreases were not reflected in increased 

cholssterol biosynthesis and degradation. Since rats fed higher protein 

grew more rapidly, the apparent decrease in serum-hepatic cholesterol pool 

size may have been utilized in increased tissue restoration. Rats in a 

physiological steady state Oc rats fed higher protein might have demon

strated increased rates of cholesterol turnover with the same alteration 

in serum-hepatic cholesterol pool size. 

It would have been useful to study cholesterol biosynthesis by measure

ments of HMG-CoA reductase activity and incorporation into DPS, 
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throughout the diurnal cycle, with regard to both meal pattern and dietary 

fat. Labeled water overcomes differences in measurement of biosynthetic 

rates due to inequalities in precursor pool size. 
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SUMMARY AND CONCLUSIONS 

Three experiments were designed to explore the Influence of feeding 

frequency and dietary fat or protein on cholesterol metabolism In adult 

rats. The model used in these studies had been developed in this labora

tory to study rapid llpogenesls in adult rats recovering from severe under

nutrition. Adult male rats were restricted to 60% of their original weight 

using a diet with negligible quantities of dietary fat and protein. Deple

tion was followed by a 10 day reallmentation with diets containing 2 or 

40% of kcal as fat (SO or BT) and 4 or 17% of kcal as protein. This deple-

tloa-refeeding model has proven useful in measurements of acute changes of 

cholesterol metabolism. In these studies, all rats began in the Identical 

nutritional state and rapidly responded with alterations in cholesterol 

transport to dietary and feeding frequency variables. 

The first experiment confirmed data obtained earlier in this labora

tory (Reeves, 1971). It indicated elevated serum cholesterol concentra

tions in rats consuming their dally allotment within an 8 hour period per 

day (MF) compared with controls allowed unlimited access to food (AL). 

Data from this experiment further confirmed that the increase in serusi 

cholesterol concentration with meal feeding was accompanied by a reciprocal 

decrease in hepatic cholesterol concentration. Serum cholesterol concen

trations were not affected by dietary polyunsaturated fat or dietary pro

tein, though such alterations had been reported by other investigators. 

It is generally accepted that shifts in serum cholesterol concentra

tions with changes dietary patterns are the result of alterations in 

one or more of the following factors: cholesterol equilibria between 
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tissues, rate of cholesterol absorption, rate of cholesterol biosynthesis 

and (or) rates of degradation and excretion of cholesterol and its metabo

lites. Furthermore, alterations in cholesterol metabolism could occur 

prior to, and result in, altered serum cholesterol concentrations. Demon

stration of differences in cholesterol metabolism with polyunsaturated fat 

and increased dietary protein might indicate the mechanisms by which serum 

cholesterol concentrations are altered in rapidly changing physiological 

states. 

Following the first experiment, parameters of in vivo cholesterol 

metabolism were evaluated in two further studies using acute labeling with 

4-i*C-cholesterol and ̂ H-acetate. These radiotracers were injected once 

intraperitoneally during the period of realimentation. Labeled cholesterol 

was injected 6 days prior to sacrifice to measure acute cholesterol tum-r 

over. On the day of sacrifice, animals were injected with ̂ H-acetate fol

lowing a 1 hour meal to obtain a relative measure of cholesterol biosyn

thesis 3.5 hours afCer food ccnsuEptior.. 

Lighting, food consumption and, therefore, diurnal maxima for choles

terol biosynthesis and degradation were reversed in these studies. Adapta

tion to reversed lighting and food consumption patterns began during the 

period of dietary restriction between 32 and 54 days prior to realimenta-

tion. 

Distribution of ^̂ C-label in bile acids and neutral steroids, and cho

lesterol S.A. in serum, liver and small intestine were altered by the var

iables used in the radiochemical studies. These alterations were taken as 

evidence of differences in overall cholesterol metabolism, though the 
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mechanisms underlying these metabolic changes remain a matter of specula

tion. Combined chemical and radiochemical data suggest that alterations 

occurred primarily In plasma and enterohepatlc cholesterol transport and 

In hepatic cholesterol degradation to bile acids. The primary Influence 

of meal pattern upon cholesterol metabolism seems to be the alteration of 

the equilibrium between serum and hepatic cholesterol. A shift of choles

terol toward the plasma compartment with meal feeding may contribute to 

decreased labeling of cholesterol pools which equilibrate less rapidly than 

the gerum-hepatlc cholesterol pool. At the same time, the S.A. of choles

terol in the rapidly equilibrating pool could be decreased by dilution of 

label with cholesterol of low S.A. from other compartments. 

In addition, changes In excretion of neutral steroids suggested that 

enterohepatlc circulation was decreased In proportion to consumption of 

diet. Decreased food consumption In meal fed rats was accompanied by a 

proportional decrease In excretion of neutral sterold-̂ Ĉ. Neither choles

terol biosytithssis nor degrsdatioîi seemed to be influenced by meal pattern. 

?oiyun8ttuusa£ed fat in the diet appeared to enhance primarily the 

degradation of cholesterol. Several Indirect pieces of evidence from the 

present study support this conclusion. These findings are In agreement 

with those of a number of investigators, but are noteworthy in that they 

seem to precede changea In serum and hepatic cholesterol concentrations 

which often occur with polyunsaturated fat feeding. Though small increases 

in the hepatic cholesterol ester fraction occurred in animals fed polyun

saturated fat, it Is doubtful that the hepatic cholesterol ester concentra

tion Influenced bile acid synthesis. The mechanism by which polyunsatu-
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rated fats Increase cholesterol degradation rates is open to further study. 

The excretion of neutral steroid label decreased with polyunsaturated 

compared to saturated fat. These results suggest that enterohepatic cir

culation was slowed with polyunsaturated fat, consistent with another re

port (McGovern and Quackenbush, 1973c). 

Finally in the model used here, polyunsaturated fat did not markedly 

influence equilibrium within the serum-hepatic cholesterol pool as has 

been claimed (Âvigan and Steinberg, 1958). We found the highest inverse 

correlation between serum and hepatic cholesterol concentrations, however, 

following polyunsaturated fat diets. 

Protein did not appear to increase turnover of cholesterol in these 

studies. In fact we found decreased losses of label in excreta with in

creased dietary protein in 2 of 4 comparisons. These findings suggest that 

adult animals recovering from protein and calorie malnutrition selectively 

utilized available protein. During the 10 day period animals were still 

actively undergoing repletion of lost body protein stores, as has been 

shovm in an earlier report from this laboratory (Chang, 1971). The chal

lenge of large quantities of dietary fat in rats during realimentation may 

have resulted in preferential use of available protein for lipoprotein 

formation by the gut. 

Data from the present studies are consistent with the following hy

potheses: 1) enhanced serum cholesterol and triglyceride levels occur as 

an adaptation to periodic fasting; 2) the requirement of the liver for cho

lesterol to stabilize secreted VLDL (very low density lipoproteins) may 

cause mobilization of cholesterol from less rapidly equilibrating choies-
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terol pools as well as Increases In serum cholesterol; 3) transfer of cho

lesterol from the liver may be Impaired with low protein diets and possi

bly with polyunsaturated fat. 

The overall turnover of cholesterol within the rapidly equilibrating 

pools did not seem to be Influenced by meal patterns and the various diets 

used in these studies. The single exception was the stock ration, which 

produced marked Increases in both cholesterol biosynthesis and degrada

tion in comparison to semisynthetic diets. Excretion of cholesterol and 

its metabolites differs from other factors in cholesterol metabolism in 

that it is not an active process» Excretion of cholesterol is subject to 

a number of influences including alterations in cholesterol metabolism by 

changes in transport, absorption, synthesis and degradation. Radiochemi

cal data of excretion from these studies demonstrate that,despite seeming 

differences in cholesterol metabolism, total loss of rapidly equilibrating 

cholesterol is remarkably similar with a number of variables including 

both feeding frequency and dietary composition. 
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Table 34. Body weights and days to depletion (Experiment 1) 

Mean body weights 

Recovery 
% 

Days 

Treatment 
Initial 

g 
Depleted 

g 
Refed 
g 

Recovery 
% 

required 
to deplete 

Depleted control 472+2 29811 - - 3212 

OF-P-AL 471±2 29711 34613 28 3212 

OF-P-MF 468±2 29711 34014 25 3211 

0F-4P-AL 46812 29911 36814 41 3412 

0F-4F-MF 46612 30011 36414 39 3312 

20S0-P-AL 46711 29811 36415 39 3312 

20S0-P-MF 47112 29811 36214 37 3211 

20S0-4P-AL 46912 29811 38914 53 3212 

20S0-4P-MF 46711 29811 38414 51 3211 

OF 468 298 355 — 32 

20S0 469 298 374 - 32 

ÂL 469 298 366 — 32 

MF 468 298 363 - 32 

P 469 298 353 — 32 

4P 468 299 376 - 33 

Analysis of Var ianee 

Fat NS NS P<.001 - NS 

Heal pattern «3 NS NS = NS 

Protein NS NS P<.001 - NS 
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Table 35. Body weights and days to depletion (Experiment 2) 

Mean body weights 

Recovery 
% 

Days 

Treatment 
Initial 

g 
Depleted 

g 
Refed 
g 

Recovery 
% 

required 
to deplete 

Depleted control 491±3 301±1 - - 52±1 

OF—P—All 489±3 298±1 354±2 29 56±1 

OF-P-MF 488±2 299±1 346±2 25 54±2 

20S0-P-AL 489±2 298±1 3ô9i3 37 56±2 

20S0-P-MF 488±7 298±1 361±3 33 54±2 

20BT-P-AL 487±2 301±1 375±3 40 56±3 

20BT-P-MF 502±7 298±1 365±5 33 56±2 

Stock-AL 493±3 296±2 423±4 64 54i2 

OF 488 299 350 — 55 

20S0 455 365 - 55 

2CBT 495 300 369 - 56 

AL 4S9 299 365 — 56 

MF 492 299 356 - 55 

Analysis of Variance 

Fat NS NS P<.001 P<.001 NS 

Meal pattern NS NS P<.001 P<.001 NS 
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Table 36. Body weights and days to depletion (Experiment 3) 

Mean body weights 

Recovery 
% 

Days 
Treatment 

Initial 
g 

Depleted 
g 

Refed 

8 

Recovery 
% 

required 
to deplete 

20S0-P-AL 473±7 293±3 373+8 44 32±2 

20S0-P-MF 465±3 300+1 356±6 34 32±1 

20S0-4P-AL 465±4 297+2 389±3 55 32±1 

20S0-4P-MF 469+4 300±2 377±4 46 33±1 

20BT-P-AL 471±5 297±2 383±6 49 33±1 

20BT-P-MF 473±4 298+1 368+5 40 31±2 

20BT-4P-AL 468±4 299±1 407±4 65 32+1 

20BT-4P-MF 467±3 298±1 387±7 53 33+2 

20S0 468 298 375 - 32 

20BT 467 299 387 - 32 

AL 469 297 390 - 32 

MF 466 300 jf - 32-

P 468 298 371 — 32 

4P 467 298 389 - 32 

Analysis of variance 

Fat KS NS P<.01 P<.ÛÛi N3 

Meal pattern NS NS P<.001 P<.001 NS 

Protein NS NS P<.001 P<.001 NS 
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Table 37. Food Intakes and food efficiencies* 

Experiment 1̂  Experiment 2̂  Experiment 3̂  

Treatment 

kcal/day 

Food 
efficiency 
g gain/ 
100 kcal 

Food 
intake 

kcal/day 

Food 
efficiency 
g gain/ 
100 kcal 

Food 
intake 

kcal/day 

Food 
efficiency 
g gain/ 
100 kcal 

OF-P-AL 71±3* 9.0±.3 80±1 9.1+.3 - -

OF-P-MF 57±3 8.0±.5 63±1 8.5±.2 - -

0P-4P-AL 71±2 12.0±,6 - - - -

0F-4P-MF 62±2 10.9±.5 - - - -

20S0-P-AL 84±4 9.4±.3 88±3 9.3±.2 96+4 7.9±.3 

20S0-P-MF 72±3 8.4±.3 73±3 8.8±.2 74±5 7.4±.5 

20S0-4P-AL 88±2 12.0±.2 - - 83±1 11.3±.3 

20S0-4P-MF 79±2 11.4±.5 - - 74±4 10.6±.3 

20BT-P-AL - - 91±3 9.4±.3 99+4 8.7+.5 

20BT-P-MF - - 74±3 8.8±.3 85+4 8.1±.5 

20BT—Ar—AL - -
= 95+4 11.3±;3 

20BT**4P='MF " - 86+4 10.0±,4 

V̂ariable means and analysis of variance are in Table 39. 

Âfter S days of rsfssding. 

Âfter 10 days of refesding. 

®Meaa±SEM. 
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Table 38. Food intakes and food efficiencies: Variable means and 
analysis of variance 

Experiment 1* Experiment 2® Experiment 3̂  

Treatment Food Food Food Food Food Food 
Intake efficiency intake efficiency intake efficiency 
kcal/day g gain/100 kcal/day g gain/100 kcal/day g gain/100 

kcal kcal kcal 

OF 63 8.6 68 9.2 - -

2ÛS0 78 9.4 80 9.0 81 9.5 

20BT - - 78 9.5 91 9.8 

AL 73 8.9 86 9.2 92 10.0 

MF 68 9.0 66 9.2 79 9.3 

P 69 7.7 — — 88 8.0 

4P 71 10.3 — — 84 10.9 

Analysis of Variance 

Fat P<.001 P<.Oi P<.01 NS P<.001 NS 

Meal 
pattern P<.01 NS P<.001 NS P<,001 P<.02 

Protein NS F<.001 «. — NS ?<.ÛOi 

Âfter 9 days of refeeding. 

After 10 days of refeeding. 
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Table 39. Food efficiencies for refeeding period minus initial two days 
(Experiments 2 and 3) 

Food efficiency 
g gain/100 kcal 

Treatment 

Experiment 2* 
V 

Experiment 3 

OF-P-AL 5.61.3̂  -

OF-P-MF 6.8±.3 -

20S0-P-AL 5.8±.4 5.2±.6 

20S0-P-MF ô.9i.3 5.u±*5 

20S0-4P-AL - 8.4i.5 

20S0-4P-MF - 8.9±.7 

20BT-P-AL 6.7±.3 6.2±.6 

20BT-P-MF 7.5±.3 6.9±.6 

20BT-4P-AL - 8.8±.4 

20BT-4P-MF - 9.4±.6 

Analysis of Variance 

Fat P<.02 P<.05 

Meal pattern P<.001 NS 

Protein - P<.001 

®Rsfesding days 3-9. 

R̂efeeding days 3-10. 

Slean±SEM. 
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Figure 10. Food consumption In kcal/2 days of the 10 day realimentation 
period. Food consumption plotted by diet (Stock, OF-P, 20S0-P, 
20BT-P) and meal pattern (AL, MF). Experiment 2 
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Figure 11. Food efficiency (g galn/100 kcal)/2 days of the 10 day real! 
mentation period. Food efficiency plotted by diet (Stock, 
OF-P, 20S0-P, 20BT-P) and meal pattern (AL, MF). Experiment 
2 
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Figure 12. Food consumption in kcal/2 days of the 10 day realimentation 
period. Food consumption plotted by diet (20S0-P, 20S0-4P, 
20BT-P, 20BT-4P) and meal pattern (AL, MF). Experiment 3 
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Figure 13. Food efficiency (g gain/100 kcal)/2 days of the 10 day reali-
mentation period. Food efficiency plotted by diet (20S0-P, 
20S0-4P, 20BT-P, 20BT-4P) and meal pattern (AL, MF). Experi
ment 3 
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